王泽, 周明, 卢雅琳, 叶霞, 徐亚妮, 徐修玲. 肠道与内窥镜的生物摩擦特性研究进展[J]. 力学与实践, 2013, 35(3): 20-26,19. DOI: 10.6052/1000-0879-13-164
引用本文: 王泽, 周明, 卢雅琳, 叶霞, 徐亚妮, 徐修玲. 肠道与内窥镜的生物摩擦特性研究进展[J]. 力学与实践, 2013, 35(3): 20-26,19. DOI: 10.6052/1000-0879-13-164
WANG Ze, ZHOU Ming, LU Yalin, YE Xia, XU Yani, XU Xiuling. ADVANCE IN BIOTRIBOLOGY BETWEEN INTESTINE AND ENDOSCOPE[J]. MECHANICS IN ENGINEERING, 2013, 35(3): 20-26,19. DOI: 10.6052/1000-0879-13-164
Citation: WANG Ze, ZHOU Ming, LU Yalin, YE Xia, XU Yani, XU Xiuling. ADVANCE IN BIOTRIBOLOGY BETWEEN INTESTINE AND ENDOSCOPE[J]. MECHANICS IN ENGINEERING, 2013, 35(3): 20-26,19. DOI: 10.6052/1000-0879-13-164

肠道与内窥镜的生物摩擦特性研究进展

ADVANCE IN BIOTRIBOLOGY BETWEEN INTESTINE AND ENDOSCOPE

  • 摘要: 肠道是人体主要的消化吸收器官,由于其结构狭窄曲折表面结构复杂,内窥镜诊断时会产生组织损伤、胶囊滞留等并发症. 由此激发起肠道与内窥镜的摩擦特性研究,该研究对解决这些并发症以及开发无损诊断内窥镜具有举足轻重的作用. 本文概括介绍了内窥镜的种类,综述了胶囊式内窥镜与肠道、微机器人与肠道的摩擦问题,内容主要集中在两个方面:(1) 胶囊式内窥镜减摩研究,包括摩擦特性研究方法、胶囊结构与摩擦阻力的关系、摩擦机理研究、摩擦阻力预测模型建立以及内窥镜结构优化;(2) 肠内微机器人实现自主行走的增摩研究,包括增大摩擦力的方法以及机理研究. 最后,提出了该领域值得进一步解决的科学问题.

     

    Abstract: As a major digestive and absorptive organ of humans, the intestinal tract is narrow and winding with a complicated surface structure, so complications such as tissue injuries and capsule stagnations frequently occur in the diagnosis process, which thus inspires considerable researches concerning the frictional characteristics of the intestinal tract and the capsule endoscope, which play an important part in treating the above mentioned diseases and developing harm-free endoscopes. This paper briefly reviews the categories of capsule endoscopes and outlines the frictional characteristics between the capsule endoscope and the intestinal tract, the microrobot and intestinal tract, concentrating on two aspects: (1) the researches concerning the friction reduction of the capsule endoscope, including research methods of the frictional characteristics, the relationship between the capsule structure and the frictional resistance, the researches of the frictional mechanism, the prediction model of the frictional resistance and the optimization of the capsule structure; (2) the researches of the friction increase for the realization of autonomous walking of in vivo micro-robot, including the methods of increasing frictional force and the related mechanisms. Finally, some scientific questions for further studies are raised.

     

/

返回文章
返回