从非线性动力学的视角认识细长压杆的稳定性

INSTABILITY OF EULER POLE FROM A POINT OF VIEW OF NONLINEAR DYNAMICS

  • 摘要: 工程上大部分机构和结构都处于动载的作用下,受压细长杆的失稳是复杂的动力破坏事件.应用Lagrange描述法建立了两端角铰支受压细长杆的非线性动力学模型,通过对这种模型简化分别得到非线性静力学模型、线性动力学模型和含三次非线性项的动力学模型. 利用谱截断方法,讨论了线性动力学模型的局部分岔. 通过讨论平衡态存在性和稳定性,得到了含三次非线性项的动力学模型分岔条件. 研究表明,受压细长杆的非线性动力学模型中存在叉形分岔.

     

    Abstract: A nonlinear dynamic model of Euler pole is established byusing the Lagrangian description method. Based on the simplifications of thenonlinear dynamic model, a nonlinear static model, a linear dynamic model anda simplified nonlinear dynamic method are obtained, respectively. Atruncation of spectra is used to analyze the local bifurcation of thelinear dynamic model. On the basis of the analysis on the steady state of thesimplified nonlinear dynamic method, the bifurcation condition isobtained. This study shows that a forked bifurcation exists in the simplifiednonlinear dynamic model.

     

/

返回文章
返回