不同模量弹性问题理论及有限元法研究进展

PROGRESSES IN ELASTICITY THEORY WITH DIFFERENT MODULI IN TENSION AND COMPRESSION AND RELATED FEM

  • 摘要: 随着科学技术的日益发展,对材料力学性质的研究提出了更高的要求,研制新型的材料以及挖掘材料自身特性的潜力,已成为新的研究动向. 简述了不同模量弹性问题理论及其有限元法的研究与发展. 利用等效的概念,对Ambartsumyan有限元计算模型、Jones有限元计算模型、张允真等有限元计算模型、叶志明等计算模型进行改进和探讨. 通过不同模量弹性理论及其有限元方法在实际工程构件问题分析中的应用表明,若沿用相同模量弹性理论或有限元对有关问题进行计算,其结果将与采用不同模量模型材料所得的刚度和强度有较大的偏差.

     

    Abstract: With the development of science and technology, one hasto develop new materials and to explorepotential of material properties. This paper presents thedevelopment of the elasticity theory with different Young's modulus in tension andcompression. There are fundamental problems for the finite element method (FEM) andengineering applications. In this paper, Ambartsumyan FEM computationalmodel, Jones' FEM computational model, Zhang's FEM computational model, andYe's FEM computational model are improved and discussed by an equivalentconcept. We find that the error of numerical results is apparent in the stiffness andstrength of the materials for engineering structures if uniform Young's modulus is used.

     

/

返回文章
返回