基于非线性拉格朗日方程求解多体动力学问题

SOLVING MULTIBODY DYNAMICS PROBLEMS BASED ON THE NORMAL LAGRANGE’S EQUATIONS

  • 摘要: 在非光滑多体系统动力学研究中,现有线性互补问题 (linear complementarity problem, LCP)建模与数值求解方法难以准确反映系统的真实物理特性。本文研究结合牛顿恢复系数和Moreau-Jean 中点算法,形成基于非线性拉格朗日方程的 LCP 算法。同时引入分段式摩擦系数模型,以更真实地反映摩擦力的非线性特征。结果表明,基于非线性拉格朗日方程的 LCP 算法在数值精确性方面更优异,分段式摩擦系数模型使系统更快趋于稳定状态,符合能量耗散定律。本工作研究对理解和预测复杂接触条件下多体系统动力学行为具有重要意义。

     

    Abstract: The existing linear complementarity problem (LCP) modeling and numerical solution methods for non-smooth multibody system dynamics fail to accurately reflect the true physical characteristics. This study combines the Newton coefficient of restitution and the Moreau-Jean midpoint algorithm to develop the LCP based on the normal Lagrange’s equations. Meanwhile, the piecewise friction coefficient model is introduced to more realistically reflect the nonlinear characteristics of frictional forces. The results show that the LCP based on the normal Lagrange’s equations has superior numerical accuracy. The piecewise friction coefficient model enables this system to reach a stable state more quickly, in accordance with the energy dissipation law. This research is of great significance for understanding and predicting the dynamic behavior of multibody systems under complex contact conditions.

     

/

返回文章
返回