微分形式动量方程的形成和使用1)

FORMATION AND USAGE OF DIFFERENTIAL MOMENTUM EQUATION1)

  • 摘要: 微分形式动量方程是流体力学中的基本方程,又常称为运动方程。从这个方程出发可以得到流体力学中重要的Navier-Stokes方程。本文对运动方程的形成和使用情况做了分析。根据文献资料,微分形式的运动方程在法国人Augustin L. Cauchy (1789—1857) 1828年的文章中曾出现。而英国人George G. Stokes (1819—1903)首次正确地把这个方程用在常黏度流体的流动问题中。另外,英国人Ronald S. Rivlin (1915—2005)首次把这个方程用在黏弹性流体的流动问题中。

     

    Abstract: The differential momentum equation in fluid mechanics is a fundamental equation, which is usually called the motion equation in textbook. The Navier-Stokes equation can be deduced from the momentum equation by adding some assumptions. The present manuscript shows the formation and usage of the equation. The equation was once reported in the work in 1828 of French Augustin L. Cauchy (1789—1857). George G. Stokes (1819—1903) in England could be the first person who used the equation correctly in the flow problem of constant-viscosity fluid according to the literatures. Moreover, English Ronald S. Rivlin (1915—2005) could use the equation in the viscoelastic flow problem firstly.

     

/

返回文章
返回