真实牙根管冲洗过程的数值模拟1)

黄正秋, 于明州, 周娜, 金晗辉

黄正秋, 于明州, 周娜, 金晗辉. 真实牙根管冲洗过程的数值模拟1)[J]. 力学与实践, 2021, 43(3): 386-392. DOI: 10.6052/1000-0879-21-129
引用本文: 黄正秋, 于明州, 周娜, 金晗辉. 真实牙根管冲洗过程的数值模拟1)[J]. 力学与实践, 2021, 43(3): 386-392. DOI: 10.6052/1000-0879-21-129
HUANG Zhengqiu, YU Mingzhou, ZHOU Na, JIN Hanhui. NUMERICAL SIMULATION OF IRRIGATION PROCESS IN REAL ROOT CANAL1)[J]. MECHANICS IN ENGINEERING, 2021, 43(3): 386-392. DOI: 10.6052/1000-0879-21-129
Citation: HUANG Zhengqiu, YU Mingzhou, ZHOU Na, JIN Hanhui. NUMERICAL SIMULATION OF IRRIGATION PROCESS IN REAL ROOT CANAL1)[J]. MECHANICS IN ENGINEERING, 2021, 43(3): 386-392. DOI: 10.6052/1000-0879-21-129
黄正秋, 于明州, 周娜, 金晗辉. 真实牙根管冲洗过程的数值模拟1)[J]. 力学与实践, 2021, 43(3): 386-392. CSTR: 32047.14.1000-0879-21-129
引用本文: 黄正秋, 于明州, 周娜, 金晗辉. 真实牙根管冲洗过程的数值模拟1)[J]. 力学与实践, 2021, 43(3): 386-392. CSTR: 32047.14.1000-0879-21-129
HUANG Zhengqiu, YU Mingzhou, ZHOU Na, JIN Hanhui. NUMERICAL SIMULATION OF IRRIGATION PROCESS IN REAL ROOT CANAL1)[J]. MECHANICS IN ENGINEERING, 2021, 43(3): 386-392. CSTR: 32047.14.1000-0879-21-129
Citation: HUANG Zhengqiu, YU Mingzhou, ZHOU Na, JIN Hanhui. NUMERICAL SIMULATION OF IRRIGATION PROCESS IN REAL ROOT CANAL1)[J]. MECHANICS IN ENGINEERING, 2021, 43(3): 386-392. CSTR: 32047.14.1000-0879-21-129

真实牙根管冲洗过程的数值模拟1)

基金项目: 1)浙江省自然科学基金(LQ19H140005);浙江省自然科学基金(LR16A020002);国家自然科学基金(11872353)
详细信息
    作者简介:

    2)金晗辉,副教授,研究方向为流体力学与流体机械。E-mail: enejhh@emb.zju.edu.cn

    通讯作者:

    金晗辉

  • 中图分类号: O368,R781.3

NUMERICAL SIMULATION OF IRRIGATION PROCESS IN REAL ROOT CANAL1)

More Information
    Corresponding author:

    JIN Hanhui

  • 摘要: 采用计算流体力学方法研究在真实人体牙根管的清洗过程中的根管内部流场特性,针对重建后的真实人体根管模型和 30 g 平头针,评估了冲洗液不同冲洗流速和针头不同工作深度对根管内流动形态、速度、壁面剪切应力和顶端压力的影响。结果表明:在真实人体根管中,持续增加冲洗液流速并不能对冲洗效果产生显著的提升效果,却会大幅提高顶端压力提升造成的挤压风险。工作深度与冲洗置换能力不是线性关系,适当的工作深度不仅具有最好的冲洗液置换效果,而且能降低顶端平均压力;而过大的工作深度对根管冲洗效果有着负面影响。
    Abstract: The computational fluid dynamics is used to investigate the flow field inside the real root canal during the irrigation, to evaluate the irrigation efficiency, as well as the effects of the irrigating fluid velocity and the working length on the flow pattern, the velocity, the shear stress and the apical pressure of the irrigating fluid. The real human root canal model and a 30 g flat head needle are adopted in the numerical simulation. It is shown that increasing the inflow velocity can not significantly improve the irrigation efficiency, but the risk of the apical extrusion is increased greatly because of the increase of the apical pressure. The working length can not always improve the displacement ability. An appropriate working length can be adopted to obtain the best displacement, together with the low apical pressure. Excessive increase of the working length might decrease the displacement and the shear stress on the wall, with a reduced irrigation efficiency.
  • [1]

    Pereira TC, Dijkstra RJB, Petridis X, et al. Chemical and mechanical influence of root canal irrigation on biofilm removal from lateral morphological features of simulated root canals, dentine disks and dentinal tubules. International Endodontic Journal, 2021,54:112-129
    DOI     URL     doi: 10.1111/iej.v54.1

    [2]

    Prasanna N, Ounsi HF, Sharmila D, et al. Effectiveness of irrigation stvelocitygies on the removal of the smear layer from root canal dentin. Odontology, 2018,107(2):1-8
    DOI     URL     doi: 10.1007/s10266-018-0371-4

    [3]

    Haupt F, Meinel M, Gunawardana A, et al. Effectiveness of different activated irrigation techniques on debris and smear layer removal from curved root canals: a SEM evaluation. Australian Endodontic Journal, 2019,46(1):1-7
    DOI     URL     doi: 10.1111/aej.v46.1

    [4]

    Khademi A, Yazdizadeh M, Feizianfard M. Determination of the minimum instrumentation size for penetration of irrigants to the apical third of root canal systems. Journal of Endodontics, 2006,32(5):417-420
    DOI     URL     doi: 10.1016/j.joen.2005.11.008

    [5]

    Pereira TC, Boutsioukis C, Dijkstra RJB, et al. Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow velocitys: a combined experimental and computational fluid dynamics approach. International Endodontic Journal, 2020,54(3):427-438
    DOI     URL     doi: 10.1111/iej.v54.3

    [6]

    Boutsioukis C, Lambrianidis T, Kastrinakis E. Irrigant flow within a prepared root canal using various flow velocitys: a computational fluid dynamics study. International Endodontic Journal, 2009,42(2):144-155
    DOI     PMID doi: 10.1111/j.1365-2591.2008.01503.x

    [7]

    Boutsioukis C, Gogos C, Verhaagen B, et al. The effect of apical preparation size on irrigant flow in root canals evaluated using an unsteady computational fluid dynamics model. International Endodontic Journal, 2010,43(10):874-881
    DOI     PMID doi: 10.1111/j.1365-2591.2010.01761.x

    [8]

    Boutsioukis C, Gogos C, Verhaagen B, et al. The effect of root canal taper on the irrigant flow: evaluation using an unsteady computational fluid dynamics model. International Endodontic Journal, 2010,43(10):909-916
    DOI     PMID doi: 10.1111/j.1365-2591.2010.01767.x

    [9]

    Boutsioukis C, Verhaagen B, Versluis M, et al. Evaluation of irrigant flow in the root canal using different needle types by an unsteady computational fluid dynamics model. Journal of Endodontics, 2010,36(5):875-879
    DOI     URL     doi: 10.1016/j.joen.2009.12.026

    [10]

    Boutsioukis C, Lambrianidis T, Verhaagen B, et al. The effect of needle-insertion depth on the irrigant flow in the root canal: evaluation using an unsteady computational fluid dynamics model. Journal of Endodontics, 2010,36(10):1664-1668
    DOI     URL     doi: 10.1016/j.joen.2010.06.023

    [11]

    Yu M, Huang Z, Zhou N, et al. Effect of inflow temperature on root canal irrigation: a computational fluid dynamics study. Physics of Fluids, 2020,32(8):081903
    DOI     URL     doi: 10.1063/5.0014737

    [12]

    Amato M, Vanoni-Heineken I, Hecker H, et al. Curved versus straight root canals: the benefit of activated irrigation techniques on dentin debris removal. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2011,111(4):529-534
    DOI     URL     doi: 10.1016/j.tripleo.2010.11.002

    [13]

    Verma P, Love RM. A Micro CT study of the mesiobuccal root canal morphology of the maxillary first molar tooth. International Endodontic Journal, 2010,44(3):210-217
    DOI     URL     doi: 10.1111/iej.2011.44.issue-3

    [14]

    Leoni GB, Versiani M, Pécora AJ, et al. Micro-computed tomographic analysis of the root canal morphology of mandibular incisors. Journal of Endodontics, 2014,40(5):710-716
    DOI     URL     doi: 10.1016/j.joen.2013.09.003

    [15]

    Uzunoglu-Özyürek E, Karaaslan H, Türkeret SA, et al. Influence of size and insertion depth of irrigation needle on debris extrusion and sealer penetration. Restorative Dentistry & Endodontics, 2018,43(1):e2

    [16]

    Wang RY, Shen Y, Ma JZ, et al. Evaluation of the effect of needle position on irrigant flow in the c-shaped root canal using a computational fluid dynamics model. Journal of Endodontics, 2015,41(6):931-936
    DOI     URL     doi: 10.1016/j.joen.2015.02.002

    [17]

    Loroo G, Zaldivar JR, Arias A, et al. Positive and negative pressure irrigation in oval root canals with apical ramifications: a computational fluid dynamics evaluation in micro-CT scanned real teeth. International Endodontic Journal, 2020,53(5):671-679
    DOI     URL     doi: 10.1111/iej.v53.5

    [18]

    Gregorio CD, Estevez R, Cisneros R, et al. Efficacy of different irrigation and activation systems on the penetration of sodium hypochlorite into simulated lateral canals and up to working length: an in vitro study. Journal of Endodontics, 2010,36(7):1216-1221
    DOI     URL     doi: 10.1016/j.joen.2010.02.019

    [19]

    Pereira TC, Dijkstra R, Petridis X, et al. The influence of time and irrigant refreshment on biofilm removal from lateral morphological features of simulated root canals. International Endodontic Journal, 2020,53(12):1705-1714
    DOI     URL     doi: 10.1111/iej.v53.12

    [20]

    Sluis LVD, Boutsioukis C, Jiang LM, et al. Root Canal Irrigation. Berlin: Springer Berlin Heidelberg, 2015

    [21]

    Gao Y, Peters OA, Wu H, et al. An application framework of three-dimensional reconstruction and measurement for endodontic research. Journal of Endodontics, 2009,35(2):269-274
    DOI     URL     doi: 10.1016/j.joen.2008.11.011

    [22]

    Neves AA, Silva EJNL, Roter JM, et al. Exploiting the potential of free software to evaluate root canal biomechanical preparation outcomes through micro-CT images. International Endodontic Journal, 2015,48(11):1033-1042
    DOI     PMID doi: 10.1111/iej.12399

    [23]

    Schneider SW. A comparison of canal preparations in straight and curved root canals. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 1971,32(2):271-275

    [24] 马莹, 韩佳龙, 于海燕 等. 四种根管冲洗液在根管内流动的计算流体动力学分析. 中华口腔医学杂志, 2015,50(6):352-357
    PMID

    Ma Ying, Han Jialong, Yu Haiyan, et al. Computational fluid dynamics analysis of the flow of four irrigations in root canal. Chinese Journal of Stomatology, 2015,50(6):352-357 (in Chinese) PMID

    [25]

    Gao Y, Haapasalo M, Shen Y, et al. Development and validation of a three-dimensional computational fluid dynamics model of root canal irrigation. Journal of Endodontics, 2009,35(9):1282-1287
    DOI     URL     doi: 10.1016/j.joen.2009.06.018

    [26]

    Damir Š, Zoran Č, Braut A, et al. Irrigation of human prepared root canal—ex vivo based computational fluid dynamics analysis. Croatian Medical Journal, 2012,53(5):470-479
    DOI     URL     doi: 10.3325/cmj.2012.53.470

    [27]

    Hu S, Duan L, Wan Q, et al. Evaluation of needle movement effect on root canal irrigation using a computational fluid dynamics model. BioMedical Engineering OnLine, 2019,18(52):52-66
    DOI     URL     doi: 10.1186/s12938-019-0679-5

    [28] 陈霄, 杨启容, 吴荣华 等. 换热面固液两相流除垢数值模拟与实验研究. 高校化学工程学报, 2017,31(4):818-826

    Chen Xiao, Yang Qirong, Wu Ronghua, et al. Numerical simulation and experimental study on defouling performance of solid-liquid two phase flow on heat transfer surface. Journal of Chemical Engineering of Chinese Universities, 2017,31(4):818-826 (in Chinese)

计量
  • 文章访问数:  503
  • HTML全文浏览量:  27
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 发布日期:  2021-06-07

目录

    /

    返回文章
    返回