模拟岩石材料脆性破裂过程的三维离散元模型

DISCRETE ELEMENT MODELING OF BRITTLE FAILURE PROCESS OF ROCK MATERIALS

  • 摘要: 发展一种能够模拟岩石材料脆性破裂过程的三维不规则、可变形块体离散元模型. 一方面,在裂纹扩展过程中动态地将潜在破坏的连续块体沿潜在破坏方向细化为若干子块体,并在子块体之间的界面上设置连接型弹簧;另一方面,连接型弹簧在满足张拉-剪切复合破坏准则时发生脆性破裂,转变为接触型弹簧,实现材料由连续到非连续的破裂. 借助动态松弛技术完成求解,通过计算实例验证该方法的适用性.

     

    Abstract: A 3D irregular deformable discrete element model isdeveloped to model the brittle failure process of rock materials. Under theexternal loadings, continuous blocks near the failure limitsare cut into several smaller blocks, and connect-type springs areassigned on the interface between these blocks. Under the tension-shear failurecriterion, the connect-type springs are broken into the contact-typesprings. As a result, a continuous-discontinuous modeling of brittle failureof rock materials is implemented. Dynamic relaxation technique is applied toobtain solutions without assembling the global matrix. The model is validated by typical examples.

     

/

返回文章
返回