中厚板的耦合多项式基径向点插值无网格法

THE RADIAL POINT INTERPOLATION WITH POLYNOMIAL BASIS FUNCTIONS IN MESHLESS METHOD FOR A MODERATELY THICK PLATE

  • 摘要: 采用Mindlin平板理论,通过最小位能原理建立了各向同性中厚板的伽辽金整体弱式方程,形函数采用耦合多项式基的径向点插值法构造,可以直接施加本质边界条件. 算例表明,用耦合多项式基的径向点插值无网格法分析中厚板问题,具有效率高、精度高和易于实现等优点,可以避免薄板弯曲时的剪切自锁现象.

     

    Abstract: The bending of a moderately thick plate is analyzedby the meshless method with the radial point interpolation andpolynomial basis functions in this paper. The global Galerkin weak-formequation for isotropicmoderately thick plate is established based on Mindlin plate theory and theminimum total potential energy principle. The shape functions constructedusing the radial point interpolation method with polynomial basis functionsenjoy Kronecker Delta function property, so the essential boundaryconditions can be easily imposed. Numerical examples show that the presentedmethod features high efficiency, good accuracy and easyimplementation. The shear locking can thus be avoided in the bendinganalysis for thin plates.

     

/

返回文章
返回