局部彼得洛夫-伽辽金法分析各向异性板屈曲

ANALYSIS OF BUCKLING FOR AN ANISOTROPIC PLATE BY THE MESHLESS LOCAL PETROV-GALERKIN (MLPG) METHOD

  • 摘要: 基于Kirchhoff板理论和对挠度函数采用移动最小二乘近似函数进行插值,进一步研究无网格局部Petrov-Galerkin(MLPG)方法在各向异性板稳定问题中的应用.分析中, 本质边界条件采用罚因子法施加, 离散的特征值方程由板稳定控制方程的局部积分对称弱形式中得到. 通过数值算例并与其他方法的结果进行比较,表明MLPG法求解各向异性薄板稳定问题具有收敛性好、精度高等一系列优点.

     

    Abstract: The meshless local Petrov-Galerkin(MLPG) methodis extended to solve the stability problems of an anisotropic plate withthe moving least-square (MLS) approximation to interpolate solutionvariables and Kirchhoff's plate theory. In the analysis, the essentialboundary conditions are enforced by a penalty method. The discreteeigenvalue problem is derived using the local integral symmetric weak formof the governing equation of stability problems. Several examples,isotropic and symmetrically laminated composite plates, are given andcompared with other methods to show that the MLPG method has a number ofadvantages such as the accuracy and the good convergence.

     

/

返回文章
返回