DYNAMIC MODELING AND GALLOPING CHARACTERISTICS OF ICED CONDUCTOR WITH CONSIDERATION OF TEMPERATURE EFFECT1)
-
摘要: 针对以往研究忽略了温度效应对覆冰导线舞动特性的影响,本文推导了考虑温度效应影响的覆冰导线舞动控制方程。基于悬链法、热应力理论推导了覆冰导线的偏微分舞动方程,接着通过Galerkin法将该偏微分方程转化为常微分方程。建立气动载荷模型,将气动力引入到舞动方程中,随后采用多尺度求得了覆冰导线的位移响应,最后进行了参数分析、算例分析。结果表明:温度对覆冰导线面内、面外的频率影响显著,且对覆冰导线舞动的幅值也有一定的影响。可见针对覆冰导线舞动特征的影响研究,有必要考虑温度效应的影响,本文的研究成果有利于理论建模的完善,也能给予实际工程一定的参考。Abstract: The influence of the temperature on the galloping characteristics of iced conductor was often neglected in related studies. In this paper, the galloping governing equation with consideration of the temperature effect is derived. Based on the catenary method and the thermal stress theory, the partial differential galloping equation of iced conductor is derived, then the partial differential equation is transformed into the ordinary differential equation by Galerkin method. The aerodynamic load model is established and the aerodynamic loads are introduced into the galloping equation. Then the displacement response of the iced conductor is obtained by the multiple scale method. Finally, a parameter analysis and a numerical example analysis are carried out. The results show that the temperature has a significant effect on the in-plane and out-of-plane frequencies of the iced conductor, and also has a certain influence on the galloping amplitude of the iced conductor. It can be seen that the influence of the temperature on the galloping characteristics of the iced conductors must be considered when studying the galloping characteristics of the iced conductor.
-
Keywords:
- temperature effect /
- iced conductor /
- galloping characteristics /
- frequency /
- amplitude
-
-
[1] 杨志安, 刘鹏飞, 席晓燕. 温度场中输电线在谐扰力作用下的1/3次亚谐共振研究. 工程力学, 2007, 24(8): 190-195 [2] 郭应龙, 李国兴, 尤传永. 输电线路舞动. 北京: 中国电力出版社, 2003 [3] 刘小会, 闵光云, 严波等. 不同自由度下覆冰四分裂导线舞动特征分析. 力学季刊, 2020, 41(2): 370-383 [4] 楼文娟, 林巍, 黄铭枫等. 不同厚度新月形覆冰对导线气动力特性的影响. 空气动力学学报, 2013, 31(5): 616-622 [5] Zhou A, Liu X, Zhang S, et al.Wind tunnel test of the influence of an interphase spacer on the galloping control of iced eight-bundled conductors. Cold Regions Science and Technology, 2018, 155: 354-366 [6] 刘小会, 韩勇, 陈世民等. 连续档覆冰导线舞动数值模拟及参数分析. 力学与实践, 2014, 36(1): 37-41 [7] 马文勇, 顾明, 全涌等. 准椭圆形覆冰导线气动力特性试验研究. 同济大学学报(自然科学版), 2010, 38(10): 1409-1413 [8] Den Hartog JP.Transmission line vibration due to sleet. AIEE Transaction, 1932, 4: 1074-1086 [9] Nigol O, Buchan PG.Conductor galloping---part II torsional mechanism. IEEE Transactions on Power Apparatus and Systems, 1981, 100(2): 708-720 [10] Ferretti M, Zulli D, Luongo A.A continuum approach to the nonlinear in-plane galloping of shallow flexible cables. Advances in Mathematical Physics, 2019, 2019: 1-12 [11] 秦力, 曹桉恺, 丁婧楠. 双分裂覆冰导线舞动的动态张拉力变化特征. 水电能源科学, 2017, 35(11): 190-193 [12] 向玲, 张悦, 唐亮. 覆冰四分裂导线的气动特性和舞动特性分析. 中国工程机械学报, 2019, 17(4): 297-303 [13] 周林抒, 严波, 杨晓辉等. 真型试验线路六分裂导线舞动模拟. 振动与冲击, 2014, 33(9): 6-11 [14] 蔡萌琦, 徐倩, 周林抒等. 扇形覆冰特高压八分裂导线舞动特性分析. 力学与实践, 2018, 40(6): 630-638 [15] Luongo A, ZulliI D, Piccardo G. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. Journal of Sound and Vibration, 2008, 315(3): 375-393 [16] Zhao Y, Peng J, Zhao Y, et al.Effects of temperature variations on nonlinear planar free and forced oscillations at primary resonances of suspended cables. Nonlinear Dynamics, 2017, 89(4): 2815-2827 [17] 黄坤, 温建明, 冯奇. 悬索承重梁索耦合结构的垂向运动动力学模型及主共振分析.工程力学, 2013, 30(2): 182-189 [18] 蔡萍, 唐驾时. 强非线性振动系统极限环振幅控制研究. 振动与冲击, 2013, 32(9): 110-112 [19] Sun C, Zhao Y, Peng J, et al.Multiple internal resonances and modal interaction processes of a cable-stayed bridge physical model subjected to an invariant single-excitation. Engineering Structures, 2018, 172: 938-955 -
期刊类型引用(5)
1. 严志权,孙晓蝶,赵俊. 木鱼花舞动的力学原理. 力学与实践. 2024(06): 1328-1332 . 本站查看
2. 闵光云,刘小会,张春霞,孙测世,蔡萌琦. 考虑气动效应的索桥耦合参数振动建模及1∶1内共振分析. 重庆理工大学学报(自然科学). 2021(03): 93-99 . 百度学术
3. 闵光云,刘小会,周晓慧,蔡萌琦,易航宇. 水平可动边界下张紧悬索参数振动建模及其共振分析. 工业建筑. 2021(04): 99-104 . 百度学术
4. 梁浩博,刘小会,杨曙光,闵光云,伍川. 几何非线性效应对受迫振动索理论解的影响评估. 噪声与振动控制. 2021(05): 1-8+44 . 百度学术
5. 刘小会,梁浩博,闵光云,杨曙光,伍川,蔡萌琦. 气动力-安培力-谐波激励作用下载流导线的非线性振动特征. 力学季刊. 2021(04): 775-788 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 492
- HTML全文浏览量: 30
- PDF下载量: 128
- 被引次数: 10