1 袁驷. 从矩阵位移法看有限元应力精度的损失与恢复. 力学与实践, 1998, 20(4): 1-6 Yuan Si.The loss and recovery of stress accuracy in FEM as seen from matrix displacement method. Mechanics in Engineering, 1998, 20(4): 1-6 (in Chinese)
|
2 龙驭球, 包世华, 袁驷. 结构力学教程(II). 北京: 高等教育出版社, 2019 Long Yuqiu, Bao Shihua, Yuan Si. Structural Mechanics (II). Beijing: Higher Education Press, 2019 (in Chinese)
|
3 Strang G, Fix G.An Analysis of the Finite Element Method. New Jersey: Prentice-Hall, 1973
|
4 Douglas J, Dupont T.Galerkin approximations for the two point boundary problems using continuous piecewise polynomial spaces. Numerische Mathematik, 1974, 22(2): 99-109
|
5 袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法. 工程力学, 2004, 21(2): 1-9 Yuan Si, Wang Mei.An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional FEM. Engineering Mechanics, 2004, 21(2): 1-9 (in Chinese)
|
6 袁驷, 林永静. 二阶非自伴两点边值问题Galerkin有限元后处理超收敛解答计算的EEP法. 计算力学学报, 2007, 24(2): 142-147 Yuan Si, Lin Yongjing.An EEP method for post-computation of super-convergent solutions in one-dimensional Galerkin FEM for second order non-self-adjoint Boundary-Value Problem. Chinese Journal of Computational Mechanics, 2007, 24(2): 143-147 (in Chinese)
|
7 袁驷, 王枚, 和雪峰. 一维C1有限元超收敛解答计算的EEP法. 工程力学, 2006, 23(2): 1-9 Yuan Si, Wang Mei, He Xuefeng.Computation of super-convergent solutions in one-dimensional C1 FEM by EEP method. Engineering Mechanics, 2006, 23(2): 1-9 (in Chinese)
|
8 袁驷, 肖嘉, 叶康生. 线法二阶常微分方程组有限元分析的EEP超收敛计算. 工程力学, 2009, 26(11): 1-9 Yuan Si, Xiao Jia, Ye Kangsheng.EEP super-convergent computation in FEM analysis of FEMOL second order ODEs. Engineering Mechanics, 2009, 26(11): 1-9 (in Chinese)
|
9 袁驷, 王枚, 王旭. 二维有限元线法超收敛解答计算的EEP法. 工程力学, 2007, 24(1): 1-10 Yuan Si, Wang Mei, Wang Xu.An element energy projection method for super-convergent solutions in two-dimensional finite element method of lines. Engineering Mechanics, 2007, 24(1): 1-10 (in Chinese)
|
10 Yuan S, Wu Y, Xu JJ, et al.A super-convergence strategy for two-dimensional fem based on element energy projection technique. Journal of Nanoelectronics and Optoelectronics, 2017, 12(11): 1284-1294
|
11 Yuan S, Wu Y, Xing QY.Recursive super-convergence computation for multi-dimensional problems via one-dimensional element energy projection technique. Applied Mathematics and Mechanics, 2018, 39(7): 1031-1044
|
12 Zhao QH, Zhou SZ, Zhu QD.Mathematical analysis of EEP method for one-dimensional finite element post processing. Applied Mathematics and Mechanics, 2007, 28(4): 441-445
|
13 袁驷, 邢沁妍, 叶康生. 一维C1有限元EEP超收敛位移计算简约格式的误差估计. 工程力学, 2015, 32(9): 16-19 Yuan Si, Xing Qinyan, Ye Kangsheng.An error estimate of EEP super-convergent displacement of simplified form in one-dimensional C1 FEM. Engineering Mechanics, 2015, 32(9): 16-19 (in Chinese)
|
14 Yuan S, He XF.Self-adaptive strategy for one-dimensional finite element method based on element energy projection method. Applied Mathematics and Mechanics, 2006, 27(11): 1461-1474
|
15 Yuan S, Xing QY, Wang X, et al.Self-adaptive strategy for one-dimensional finite element method based on EEP method with optimal super-convergence order. Applied Mathematics and Mechanics, 2008, 29(5): 591-602
|
6 Yuan S, Ye KS, Wang YL, et al.Adaptive finite element method for eigensolutions of regular second and fourth order Sturm-Liouville problems via the element energy projection technique. Engineering Computations, 2017, 34(8): 2862-2876
|
17 Yuan S, Du Y, Xing QY, et al.Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method. Applied Mathematics and Mechanics, 2014, 35(10): 1223-1232
|
18 Jiang KF, Yuan S, Xing QY.An adaptive nonlinear finite element analysis of minimal surface problem based on element energy projection technique. Engineering Computations, 2020 (in press)
|
19 Yuan S, Dong YY, Xing QY, et al.Adaptive finite element method of lines with local mesh refinement in maximum norm based on element energy projection method. International Journal of Computational Methods, 2020, 17(4): 209-222
|
20 Dong YY, Yuan S, Xing QY.Adaptive finite element analysis with local mesh refinement based on a posteriori error estimate of element energy projection technique. Engineering Computations, 2019, 36(6): 2010-2033
|