THE DURABILITY OF GLASS FIBER REINFORCED COMPOSITE REBARS IN SALT LAKE HIGH AND COLD AREA1)
-
摘要: 对玻璃纤维(glass fiber reinforced polymer, GFRP)筋和GFRP -钢筋夹芯复合筋在盐湖地区多重环境因素耦合作用下进行耐久性试验,分析环境类型及作用时间对极限抗拉强度、弹性模量、极限应变的影响。结果表明:在多重因素耦合作用下,随着盐湖卤水腐蚀周期、冻融次数、干湿循环次数的增加,GFRP筋和GFRP夹芯复合筋的抗拉强度逐渐减小,但是GFRP筋减小的幅度较小,而GFRP夹芯复合筋由于有钢筋的存在,抗拉强度减小比较大,特别是在盐湖卤水90 d以上、冻融150次以上时GFRP夹芯复合筋的极限抗拉强度实验不是很明显,屈服强度几乎不存在并且与抗拉极限强度相接近,表现出明显的脆性;在各种因素作用下,GFRP筋随着龄期的增加,弹性模量先减少后增加,而GFRP夹芯复合筋的弹性模量逐渐减小,相对来讲减小的幅度不是很大;各种耦合因素作用下GFRP筋和GFRP夹芯复合筋的极限抗拉强度、弹性模量均比单因素作用下小,且腐蚀性的大小关系是盐湖卤水+干湿循环+冻融耦合>盐湖卤水+干湿循环>冻融>盐湖卤水。Abstract: The durability tests of glass fiber (GFRP) and GFRP-reinforced steel rebars are carried out under the action of multiple environmental factors in Salt Lake Area. The environmental types and the action time influence the ultimate tensile strength, the elastic modulus and the ultimate strain. It is shown that the tensile strength of the GFRP rebars and the GFRP steel rebars decreases gradually with the increase of the corrosion cycles, the freeze-thaw cycles and the dry-wet cycles in Salt Lake, and the brine under the coupling of multiple factors, but the tensile strength reduction of the GFRP rebars is small, the ultimate tensile strength reduction of GFRP steel rebars is not significant, especially when the GFRP steel rebars is put in Salt Lake for more than 90 days. With the brine and more than 150 cycles of freeze-thaw, the yield strength of the GFRP bars is almost non-existent and close to the ultimate tensile strength, and the elastic modulus of the GFRP bars decreases and then increases with the increase of age, however, the elastic modulus of the GFRP rebars decreases gradually, which is not very large in comparison with the GFRP rebars under various coupling factors, and the ultimate tensile strength and the elastic modulus of the GFRP rebars under various coupling factors are smaller than those under a single factor, and the relationship with the corrosivity is: Salt Lake Brine + dry-wet cycle + freeze-thaw coupling > Salt Lake Brine + dry-wet cycle > freeze-thaw > Salt Lake Brine.
-
-
[1] 陈肇元. 土建结构工程的安全性与耐久性. 北京: 中国建筑工业出版社, 2003 [2] 黄生文, 邱贤辉, 何唯平等. FRP土钉主要性能的试验研究. 土木工程学报, 2007, 40(8): 74-78Huang Shengwen, Qiu Xianhui, He Weiping, et al.An experimental study on the per formance of FRP soil nails. China Civil Engineering Journal, 2007, 40(8): 74-78 (in Chinese) [3] Jones KD, Di Benedetto AT.Fiber fracture in hybrid composite systems. Composites Science and Technology, 1994, 51(1): 53-62
[4] Phillips LN.The hybrid effect-does it really exist. Composites, 1976, 7(1): 7-8
[5] Bakis CE, Nanni A, Terosky JA, et al.Self-monitoring, pseudo-ductile, hybrid FRP reinforcement rods for concrete applications. Composites Science and Technology, 2001, 61(6): 815-823
[6] You YJ, Park YH, Kim HY, et al.Hybrid effect on tensile properties of FRP rods with various material compositions. Composite Structures, 2006, 8(5): 296-302
[7] Cavatorta MP.A comparative study of the fatigue and post-fatigue behavior of carbon-glass/epoxy hybrid RTM and hand lay-up composites. Journal of Materials Science, 2007, 42: 8636-8644
[8] 张新越, 欧进萍. FRP筋酸碱盐介质腐蚀与冻融耐久性试验研究. 武汉理工大学学报, 2009, 9(1): 33-36Zhang Xinyue, Ou Jinping.Durability experimental research on resistance of acidic, alkali, salt solutions and freeze-thaw properties of frp bar. Journal of Wuhan University of Technology, 2009, 9(1): 33-36 (in Chinese) [9] 王海良, 吴振. 酸溶液、冻融循环及其耦合作用下玄武岩纤维筋耐久性试验.防灾减灾工程学报, 2018, 38(1): 39-45Wang Hailiang, Wu Zhen.Experimental study on the durability of BFRP bars under the acidicsolution, the cycle of freezing and thawing and the coupled action. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(1): 39-45 (in Chinese) [10] 高永红, 黄孝国, 金清平. 玻璃纤维复材筋损伤力学性能试验研究. 工业建筑, 2019, 49(4): 174-179Gao yonghong, Huang xiaoguo, Jin qingping. Experimental research on mechanical properties of GFRP bars with damage. Industrial Construction, 2019, 49(4): 174-179 (in Chinese) [11] 刘生纬, 赵建昌, 张家玮. 解析法和有限元法在高边坡稳定性分析中的应用. 兰州交通大学学报, 2017, 36(6): 96-100Liu Shengwei, Zhao Jianchang, Zhang Jiawei.Application of the analytical method and thefinite element method to the stability analysis of high slope. Journal of Lanzhou Jiaotong University, 2017, 36(6): 96-100 (in Chinese) [12] 靳文强, 李媛媛, 王琦等. 硫酸盐干湿循环作用下烧结粘土砖劣化机理及强度预测. 兰州交通大学学报, 2018, 37(5): 8-12Jin Wenqiang, Li Yuanyaun,Wang qi, et al. Study on the deterioration mechanism and strength prediction of clay bricks under cyclical wetting and drying in sulfate solution. Journal of Lanzhou Jiaotong University, 2018, 37(5): 8-12 (in Chinese) [13] 刘廷滨, 赵建昌, 张洪杰. 基于灰色理论的初沉池混凝土耐久性预测分析. 兰州交通大学学报, 2010, 36(4): 106-109 [14] 王依兵, 张铮, 苏飞. 复合材料模量细观分析的一般性模型. 力学与实践, 2013, 35(2): 73-76Wang Yibing, Zhang Zheng, Su Fei.General micromechanical method to estimate elastic constants of transversely anisotropic composites. Mechanics in Engineering, 2013, 35(2): 73-76 (in Chinese) [15] 李趁趁, 于爱民, 王英来. 模拟混凝土碱性环境下FRP 筋的耐久性. 建筑科学, 2013, 29(1): 47-51Li Chenchen, Yu Aimin, Wang Yinglai.Durability of FRP rebars in alkaline environment of concrete. Building Science, 2013, 29(1): 47-51 (in Chinese) [16] 中华人民共和国国家质量监督检验检疫总局, 中国标准化管理委员会.GB/T 30022---2013纤维增强复合材料筋基本力学性能试验方法. 北京: 中国标准出版社, 2014 [17] 余红发. 盐湖地区高性能混凝土的耐久性、机理及使用寿命预测方法.[博士论文]. 南京: 东南大学, 2004 [18] GB/T50082-2009普通混凝土长期性能和耐久性能实验方法标准.B/T50082-2009普通混凝土长期性能和耐久性能实验方法标准.北京:中华人民共和国住房与城乡建设部, 2010 [19] 王伟, 孟艳玲, 钱文军. 碱侵蚀环境下FRP筋的耐久性. 合成树脂及塑料, 2009, 26(2): 27-30 [20] 金清平, 郑祖嘉, 陈智等. 基于细观结构的GFRP筋拉伸试验分析.塑料工业, 2014, 42(10): 50-54Jin Qingping, Zheng Zujia, Chen Zhi, et al.GFRP bars tensile tests analysis based on microstructure. China plastics industry, 2014, 42(10): 50-54 (in Chinese) -
期刊类型引用(0)
其他类型引用(4)
计量
- 文章访问数: 381
- HTML全文浏览量: 18
- PDF下载量: 106
- 被引次数: 4