运用机器学习方法设计原子链人工边界条件 1)
DESIGNING ARTIFICIAL BOUNDARY CONDITIONS FOR ATOMIC CHAINS BY MACHINE LEARNING 1)
-
摘要: 本文运用机器学习方法设计一维线性原子链的人工边界条件。该方法基于前馈神经网络,通过对一小部分数值解进行训练后得到人工边界条件。应用该法不需要较多先验知识,编程简单,实现速度快,算例表明数值反射较小。Abstract: In this paper, we adopt machine learning techniques to design artificial boundary conditions for one-dimensional linear atomic chain. Training a feedforward neural network with a small amount of numerical solutions, we obtain artificial boundary conditions. This approach requires little prior information, and programming and computation are fast. Numerical examples illustrate a relatively small reflection.