回流效应下电磁轨道炮膛口电弧运动的数值分析

NUMERICAL ANALYSIS OF ARC MOTION IN RAILGUN MUZZLE UNDER THE EFFECT OF BACKFLOW

  • 摘要: 在电磁轨道炮发射过程中,膛口外的高温气团以远高于声速的运动速度向内膛运动,这会使得膛口的电弧形态发生改变以及电弧位移。为了实现膛口电弧运动过程的数值计算,本文基于磁流体理论,引入了一种和电弧等离子体自身电导率密切相关的电位边界条件处理方法,建立了膛口位置电弧仿真模型。对回流效应下的电弧运动规律进行了分析,并且研究了运动过程中电弧对内膛流场的温度分布产生的影响。结果表明电弧的运动加剧了膛内温升。

     

    Abstract: During the launching process of the railgun, the high temperature air mass outside the muzzle moves to the interior at a speed far higher than the sound speed, which will change the arc shape of the muzzle and cause the arc displacement. This paper makes a numerical calculation of the movement process of the muzzle arc, based on the theory of magneto hydro dynamical (MHD), with a treatment method of potential boundary condition closely related to the electric conductivity of the arc plasma itself, and a three dimensional simulation model of the muzzle position arc is established. The arc motion under the backflow effect is analyzed, and the influence of the arc on the temperature distribution of the railgun inner bore flow field is studied. The simulation results show that the movement of the muzzle arc intensifies the temperature rise in the bore.

     

/

返回文章
返回