HEAT-PIPE-COOLED THERMAL PROTECTION FOR THE LEADING EDGE OF THE WING
-
摘要: 针对高超声速飞行器飞行时翼前缘存在着严重的气动加热问题,为了保证翼前缘的尖锐外形,提出疏导式热防护结构,利用内置高温热管结构为翼前缘提供热防护。采用数值模拟和电弧风洞试验的方法对翼前缘疏导式结构进行了分析,得到翼前缘内置高温热管具有的防热效果。数值模拟结果表明在一定热环境条件下,翼前缘驻点温度下降了304K,尾部最低温度升高了130K,实现了热流从高温区到低温区的疏导,减弱了翼前缘的热载荷,强化了翼前缘的热防护能力。通过电弧风洞试验可以获得相同的热防护结果,并且在一定飞行条件下高温热管可以自适应启动,验证了数值模拟方法的准确性以及翼前缘内置高温热管疏导式热防护结构的可行性。Abstract: In view of the severe aerodynamic heating on the wing leading edge of the hypersonic vehicle, in order to ensure the sharp shape of the leading edge of the wing, a dredged thermal protection structure is proposed, and the built-in high-temperature heat pipe structure is used to provide the thermal protection for the leading edge of the wing. The numerical simulation and the arc wind tunnel test method are used to analyze the wing leading edge dredging structure, and to reveal the heat protection effect of the built-in high-temperature heat pipe at the leading edge of the wing. The numerical results show that under certain thermal conditions, the temperature on the leading edge of the wing decreases by 304K, and the minimum temperature on the tail increases by 130K. The heat flow from the high temperature zone to the low temperature zone is dredged, and the thermal load on the leading edge of the wing is weakened. The thermal protection for the leading edge of the wing is enhanced. The same result is obtained by the arc wind tunnel test. And the high temperature heat pipe can be adaptively started under certain flight conditions, which verifies the accuracy of the numerical simulation method and the feasibility of the built-in high temperature heat pipe dredging thermal protection structure at the leading edge of the wing.
-
-
[1] 彭志琦, 张均锋, 牛斌. 曲率半径对前缘气动热与结构响应的影响. 力学与实践2011, 33(2): 18-23 [2] Boman B, Elias T. Tests on a sodium/Hastelloy X wing leading edge heat pipe for hypersonic vehicles. 5th Joint Thermophysics and Heat Transfer Conference, Seattle, WA, 2013 [3] 张志成. 高超声速气动热和热防护. 北京: 国防工业出版社, 2003 [4] Van Driest ER. The problem of aerodynamic heating.Aeronautical Engineering Review, 1956, 15(10): 26-41 [5] 殷金其. 航天热防护材料的烧蚀特性研究. 固体火箭技术, 1993(4): 84-91 [7] Zhu K, Li Y, Lu P. Experimental investigation on heat transfer characteristics of a novel heat pipe radiator used to cool high heat flux device.Cryogenics & Superconductivity, 2011, 39(1): 42-46 [8] Li QH, Zhao XB, Huang H, et al. A multistage cool storage system of natural coldness resource based on heat pipe.Advanced Materials Research, 2012, 512-515: 1097-1101 [9] Gwon HS, Kim SH, Kasada R, et al. Anisotropic heat transfer characteristics of composite material enhanced with high thermal conductivity fiber. 25th Symposium on Fusion Engineering, San Francisco, CA, 2013 [10] Silverstein CC. A feasibility study of dredged leading edges for hypersonic cruise aircraft. NASA CR 1857, 1971 [11] Niblock GA, Reeder JC, Huneidi F. Four space shuttle wing leading edge concepts.Journal of Spacecraft and Rockets, 1974, 11(5): 314-320 [12] Xie G, Ji T, Sunden B, et al. Investigation on thermal performance of a high-temperature heat-pipe thermal protection structure.Journal of Engineering Thermophysics, 2016, 25(3): 359-376 [13] 赵蔚琳, 刘宗明, 李树人. 高温热管的研究与发展. 石油化工设备, 200534(4): 40-44 [14] 刘洪鹏, 刘伟强. 飞行器层板式前缘热管防热结构等效热分析. 国防科技大学学报, 2016, 38(2): 19-24 [15] 陈连忠, 欧东斌. 高温热管在热防护中应用初探. 实验流体力学, 20103(2): 51-54 -
期刊类型引用(1)
1. 黄红岩,苏力军,雷朝帅,李健,张恩爽,李文静,杨洁颖,赵英民,裴雨辰,张昊. 可重复使用热防护材料应用与研究进展. 航空学报. 2020(12): 6-40 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 805
- HTML全文浏览量: 23
- PDF下载量: 175
- 被引次数: 2