NUMERICAL SIMULATION OF FIBROBLAST DUROTAXIS MIGRATION INDUCED BY STIFFNESS GRADIENT OF SUBSTRATE1)
-
摘要: 建立了一种细胞趋硬性迁移的理论模型和有限元分析框架,为连续变刚度人工基质的试验设计提供理论依据。考虑了细胞体的黏弹性属性,以及细胞与基质间的配受体动态反应过程,并以配受体合成时间为时间步长,将细胞运动方程化为静力学形式进行求解。对有限元过程提出一种动约束,便于消除其结构矩阵的奇异性。结果表明,模型能够模拟黏着斑内部力的快速波动现象,细胞的运动速度与观测数据一致,可有效模拟20,h以上的长时程问题。Abstract: A theoretical model and the finite element method (FEM) are used to simulate the durotaxis movement of the cell on an artificial substrate with a continuous varying stiffness for the test design. The viscoelastic properties of the cell and the dynamic reactions of the receptors and the ligands between the cell and the substrate, are all considered. The time step equal to that of producing a pair of receptor-ligand is used for discretizing the functions of the time, turning the dynamic FEM into a static one. And a condition of moving constraint for the cell structure is proposed for eliminating the singularity of the FEM matrix more easily. The simulation results show that there is a rapid fluctuation of the force in the focal adhesion during the cell durotaxis, the speed of the cell migration, as is consistent with the observation, and the migration process can efficiently last over 20 hours.
-
-
[1] Singh MK, Kumar P, Behera BK.Scaffolds for tissue engineering.Mrs Bulletin, 2016, 18(10):58-62
[2] Thompson SM, Jin W, Chandan VS, et al.MR elastography of hepatocellular carcinoma: correlation oftumor stiffness with histopathology features-preliminary findings.Magnetic Resonance Imaging,2016, 37: 41-45
[3] Berry MF, Engler AJ, Woo YJ, et al.Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance.American Journal of Physiology Heart and Circulatory Physiology, 2006, 290(6): 2196-2203
[4] 张钢, 龙勉, 吴泽志. 肝癌细胞黏弹性的实验研究. 解放军医学杂志, 2001, 26(3): 204-206Zhang Gang, Long Mian, Wu Zezhi.Experimental study on viscoelastic properties of hepatocellular carcinoma cells. Med J Chin PLA, 2001, 26(3): 204-206 (in Chinese) [5] Vincent LG, Yu SC, Alonso-Latorre B, et al.Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength.Biotechnology Journal, 2013, 8(4): 472-484
[6] Lo CM, Wang HB, Dembo M, et al.Cell movement is guided by the rigidity of the substrate.Biophysical Journal, 2000, 79(1): 144-152
[7] Eroshenko N, Ramachandran R, Yadavalli VK, et al.Effect of substrate stiffness on early human embryonic stem cell differentiation.Journal of Biological Engineering, 2013, 7(1): 1-8
[8] Whang M, Kim J.Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds.Tissue Engineering & Regenerative Medicine, 2016, 13(2): 126-139
[9] Orsi G, Fagnano M, Maria CD, et al.A new 3D concentration gradient maker and its application in building hydrogels with a 3D stiffness gradient.Journal of Tissue Engineering & RegenerativeMedicine, 2017, 11(1): 256-264
[10] Mohanty S, Samger K, Heiskanen A, et al.Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.Materials Science & Engineering C Materials for Biological Applications, 2016, 61: 180-189
[11] Harley BA, Kim HD, Zaman MH, et al.Microarchitecture of three-dimensional scaffolds influences cellmigration behavior via junction interactions.Biophysical Journal, 2008, 95(8): 4013-4024
[12] Dimilla PA, Barbee K, Lauffenburger DA.Mathematical model for the effects of adhesion and mechanicson cell migration speed.Biophysical Journal, 1991, 60(1): 15-37
[13] Dokukina IV, Gracheva ME.A model of fibroblast motility on substrates with different rigidities. Biophysical Journal, 2010, 98(12): 2794-2803
[14] Zeng X, Li S.A three dimensional soft matter cell model for Mechanotransduction.SoftMatter, 2012, 8(21): 5765-5776
[15] Zaari N, Rajagopalan P, Kim S, et al.Photopolymerization in microfluidic gradient generators:microscale control of substrate compliance to manipulate cell response.Advanced Materials, 2004,16(16): 2133-2137
[16] Zhao XK, Cheng Y, Cheng ML, et al.Focal adhesion kinase regulates fibroblast migration via integrinbeta-1 and plays a central role in fibrosis.Scientific Reports, 2016, 6: 19276
[17] Ascione F, Vasaturo A, Caserta S, et al.Comparison between fibroblast wound healing and cell randommigration assays in vitro.Experimental Cell Research, 2016, 347(1): 123-132
[18] Sackmann E.How actin/myosin crosstalks guide the adhesion, locomotion and polarization of cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2015, 1853(11): 3132-3142
[19] Harris A K, Wild P, Stopak D.Silicone rubber substrata: a new wrinkle in the study of cell locomotion.Science, 1980, 208(4440): 177-179
[20] Oliver T, Lee J, Jacobson K.Forces exerted by locomoting cells.Seminars in Cell Biology, 1994, 5(3): 139-147
[21] Wells A, Gupta K, Chang P, et al.Epidermal growth factor receptor-mediated motility in fibroblasts. Microscopy Research & Technique, 2015, 43(5): 395-411
[22] Golestaneh AF, Nadler B.Modeling of cell adhesion and deformation mediated by receptor-ligand interactions.Biomechanics & Modeling in Mechanobiology, 2016, 15(2): 371-387
[23] Zaman MH, Kamm RD, Matsudaira P, et al.Computational model for cell migration in three-dimensionalmatrices.Biophysical Journal, 2005, 89(2): 1389-1397
[24] Wong HC, Tang WC.Computational study of local and global ECM degradation and the effects on cellspeed and cell--matrix tractions.Nano Communication Networks, 2011, 2(2-3): 119-124
[25] GI Bell.Models for the specific adhesion of cells to cells.Science, 1978, 200(4342):618-627
[26] Gao H, Qian J, Chen B.Probing mechanical principles of focal contacts in cell-matrix adhesion with acoupled stochastic-elastic modelling framework.Journal of the Royal Society Interface, 2011, 8(62):1217-1232
[27] Haga H, Sasaki S, Kawabata K, et al.Elasticity mapping of living fibroblasts by AFM andimmunofluorescence observation of the cytoskeleton.Ultramicroscopy, 2000, 82(1-4): 253-258
[28] N'Dri NA, Shyy W, Transontay R. Computational modeling of cell adhesion and movement using acontinuum-kinetics approach.Biophysical Journal, 2003, 85(4): 2273-2286
[29] Roy S, Qi HJ.A computational biomimetic study of cell crawling.Biomechanics & Modeling in Mechanobiology, 2010, 9(5): 573-581
[30] Gracheva ME, Othmer HG.A continuum model of motility in ameboid cells.Bulletin ofMathematical Biology, 2004, 66(1): 167-193
[31] Ghosh K, Pan Z, Guan E, et al.Cell adaptation to a physiologically relevant ECM mimic with differentviscoelastic properties.Biomaterials, 2007, 28(26): 671-679
[32] 冯世亮, 朱卫平. 运动细胞初始极化阶段胞内信号分子双向积聚的分子机制及动态数值模拟. 中国科学: 物理学·力学·天文学, 2012(42): 973-986Feng Shiliang, Zhu Weiping.Molecular mechanisms and dynamic simulation of bipolarization of chemotactic cells. Sci Sin-Phys Mech Astron, 2012(42): 973-986 (in Chinese) [33] 冯世亮, 朱卫平. 基于信号分子双向输运的运动细胞极性反转模拟. 力学学报, 2015, 47(2): 337-345Feng Shiliang, Zhu Weiping.Simulation for reversal of cell polarity based on bidirectional transport of signaling molecules. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 337-345 (in Chinese) [34] Plotnikov SV, Waterman CM.Guiding cell migration by tugging.Current Opinion in CellBiology, 2013, 25(5): 1-13
[35] Plotnikov SV, Pasapera AM, Sabass B, et al.Force fluctuations within focal adhesions mediateECM-rigidity sensing to guide directed cell migration.Cell, 2012, 151(7): 1-23
[36] Wormer DB, Davis KA, Henderson JH, et al.The Focal adhesion-localized CdGAP regulates matrixrigidity sensing and durotaxis.Plos One, 2014, 9(3): e91815
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 941
- HTML全文浏览量: 15
- PDF下载量: 172
- 被引次数: 1