磁流变整星隔振平台频域加权LQR控制研究1)

FREQUENCY-SHAPING LQR CONTROL OF WHOLE-SPACECRAFT VIBRATION ISOLATION PLATFORM BASED ON MR DAMPER1)

  • 摘要: 设计磁流变六杆隔振平台,以改善星箭界面低频振动环境.采用牛顿-欧拉法建立整星隔振平台动力学模型,利用固定界面模态综合法得到卫星和隔振平台动力学模型.由于星箭界面低频振动环境在特定频段存在振动量级较大的问题,采用频域加权LQR (linear quadratic regulator)方法,利用直接分解法扩展系统状态变量,进行磁流变阻尼器半主动控制系统设计.仿真结果表明,相对传统控制方法,频域加权LQR方法在特定频段减振效果明显改善,且在其他频段没有恶化,验证了算法有效性.

     

    Abstract: To improve the interface vibration environment of the satellite and the rocket,a magnetorheological six-pole vibration isolation platform is designed. The dynamic model of the satellite vibration isolation platform is established by using the Newton-Euler method. The dynamic model of the satellite and the vibration isolation platform is built by using the fixed interface modal synthesis method. In order to study the specific frequency band attenuation, the frequency-shaping LQR (linear quadratic regulator) method which extends the system state variables by direct decomposition is used to design the semi-active control system of magnetorheological damper. The simulation results show that the frequency-shaping LQR method is better than the traditional control method, and the control effect is not deteriorated in other frequency bands. The effectiveness of the algorithm is verified.

     

/

返回文章
返回