1 《航空发动机设计用材料数据手册》编委会编. 《航空发动机设 计用材料数据手册》(第3 册). 北京:航空工业出版社,2008
|
2 周承恩,谢季佳,洪友士. 超高周疲劳研究现状及展望. 机械强 度,2004, 26(5): 526-533
|
3 US Department of Defense. MIL-HDBK, 1783BW/ CHANGE2, Engine Structural Integrity Programs (EN- SIP). 2004
|
4 李全通,刘青川,申景生. TC17 钛合金超高周弯曲振动疲劳试 验. 航空动力学报,2012, 3(27): 617-622
|
5 高潮,程礼,彭桦等. 20kHz 下TC17 钛合金超高周疲劳性能 研究. 航空动力学报,2012, 4(27): 811-816
|
6 李久楷,刘永杰,王清远等. TC17 钛合金高温超高周疲劳实验. 航空动力学报,2014, 7(29): 1567-1573
|
7 Liu XL, Sun CQ, Hong YS. Effects of stress ratio on high- cycle and very-high-cycle fatigue behavior of a Ti-6Al-4V alloy. Materials Science & Engineering A, 2015, 622: 228-235
|
8 Zuo JH, Wang ZG, Han EH. Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V. Materials Science & Engineering A, 2008, 473: 147-152
|
9 Matikas TE. Specimen design for fatigue testing at very high frequencies. Journal of Sound and Vibration, 2001, 247(4): 673-681
|
10 高镇同,熊峻江著. 疲劳可靠性. 北京: 北京航空航天大学出版 社,2000
|
11 高庆峰. 宽弦空心风扇叶片超塑成形的数值仿真研究. [硕士论 文]. 南京:南京航空航天大学,2008
|
12 Yoshiyuki F, Etsuo T. Gigacycle fatigue properties of Ti-6Al-4V alloy under tensile mean stress. Materials Science & Engineering A, 2014, 598: 135-140
|
13 Takeuchi E, Furuya Y, Nagashima N, et al. The effect of frequency on the giga-cycle fatigue properties of a Ti-6Al-4V alloy. Fatigue & Fracture of Engineering Materials & Structures, 2008, 31: 599-605
|