第一类拉格朗日方程:历史与表述

LAGRANGE’S EQUATIONS OF THE FIRST KIND: THE HISTORY AND THE FORMULATION

  • 摘要: 讨论与理论力学教学相关的第一类拉格朗日方程问题。首先梳理了第一类拉格朗日方程的历史,包括拉格朗日关于方程和乘子的原创思想,伯特兰在一般情形的形式化,雅可比对第一类和第二类方程的命名,以及劳斯对非完整系统的推广。然后重新考察了带不独立坐标的拉格朗日方程,建议将不独立坐标称为赝广义坐标,引入不定乘子推导了赝广义坐标表述的拉格朗日方程,并强调了广义力与赝广义坐标对应的赝广义力的区别。最后明确了不同形式的第一类拉格朗日方程的关系。

     

    Abstract: The teaching relevent issues are treated for Lagrange’s equations of the first kind in theoretical mechanics. Firstly, the history of Lagrange’s equations of the first kind are clarified including Lagrange’s original idea of the equations and the multipliers, Bertrand’s formalization in general terms, Jacobi’s nomenclature of the first and the second kinds, and Rorth’s extension to nonholonomic systems. Then the Lagrange’s equations in terms of redundant coordinates are revisited by suggesting the redundant coordinates named as pseudo-generalized coordinates, reformulating the derivation of Lagrange’s equations of the first kind with the forcus on the introduction of the multipliers, and highlighting the difference between generalized forces and pseudo-generalized forces corresponding to the pseudo-generalized coordinates. Finally the relations are constructed among the different forms of Lagrange’s equations of the first kind.

     

/

返回文章
返回