细长柔韧压杆弹性失稳后挠曲线形状的计算机仿真

潘文波, 李银山, 李彤, 李欣业

潘文波, 李银山, 李彤, 李欣业. 细长柔韧压杆弹性失稳后挠曲线形状的计算机仿真[J]. 力学与实践, 2012, 34(1): 48-51. DOI: 10.6052/1000-0879-20120108
引用本文: 潘文波, 李银山, 李彤, 李欣业. 细长柔韧压杆弹性失稳后挠曲线形状的计算机仿真[J]. 力学与实践, 2012, 34(1): 48-51. DOI: 10.6052/1000-0879-20120108
PAN Wenbo, LI Yinshan, LI Tong, LI Xinye. COMPUTER SIMULATION OF DEFLECTION CURVE SHAPE FOR THE SLENDER, FLEXIBLE, COMPRESSED BAR AFTER BUCKLING[J]. MECHANICS IN ENGINEERING, 2012, 34(1): 48-51. DOI: 10.6052/1000-0879-20120108
Citation: PAN Wenbo, LI Yinshan, LI Tong, LI Xinye. COMPUTER SIMULATION OF DEFLECTION CURVE SHAPE FOR THE SLENDER, FLEXIBLE, COMPRESSED BAR AFTER BUCKLING[J]. MECHANICS IN ENGINEERING, 2012, 34(1): 48-51. DOI: 10.6052/1000-0879-20120108
潘文波, 李银山, 李彤, 李欣业. 细长柔韧压杆弹性失稳后挠曲线形状的计算机仿真[J]. 力学与实践, 2012, 34(1): 48-51. CSTR: 32047.14.1000-0879-20120108
引用本文: 潘文波, 李银山, 李彤, 李欣业. 细长柔韧压杆弹性失稳后挠曲线形状的计算机仿真[J]. 力学与实践, 2012, 34(1): 48-51. CSTR: 32047.14.1000-0879-20120108
PAN Wenbo, LI Yinshan, LI Tong, LI Xinye. COMPUTER SIMULATION OF DEFLECTION CURVE SHAPE FOR THE SLENDER, FLEXIBLE, COMPRESSED BAR AFTER BUCKLING[J]. MECHANICS IN ENGINEERING, 2012, 34(1): 48-51. CSTR: 32047.14.1000-0879-20120108
Citation: PAN Wenbo, LI Yinshan, LI Tong, LI Xinye. COMPUTER SIMULATION OF DEFLECTION CURVE SHAPE FOR THE SLENDER, FLEXIBLE, COMPRESSED BAR AFTER BUCKLING[J]. MECHANICS IN ENGINEERING, 2012, 34(1): 48-51. CSTR: 32047.14.1000-0879-20120108

细长柔韧压杆弹性失稳后挠曲线形状的计算机仿真

基金项目: 国家自然科学基金项目资助(10872063).
详细信息
    作者简介:

    李银山, 1961年生, 男, 博士, 教授, 研究方向为非线性动力学振动、控制和 优化设计.E-mail: yinshanli@126.com

  • 中图分类号: O343.9

COMPUTER SIMULATION OF DEFLECTION CURVE SHAPE FOR THE SLENDER, FLEXIBLE, COMPRESSED BAR AFTER BUCKLING

  • 摘要: 采用Maple编程对细长柔韧压杆弹性失稳后挠曲线形状进行了计算机仿真,进行了细长柔韧压杆弹性失稳后最大挠度和挠曲线封闭两种情况下的挠曲线形状仿真和详细的解答.分析计算了失稳后屈曲的力学特征,给出了解析表达式;分析计算了失稳后屈曲的平衡状态曲线的几何特征,绘出了计算机仿真曲线.结果表明:失稳后最大挠度和挠曲线封闭是属于两个完全不同的屈曲状态.
    Abstract: A Maple code is developed for the slender, flexible, compressed post-buckling bar. Its deformation curve shape is numerically simulated. Simulations and detailed solutions are given for two cases---the maximum deflection and the closing deflection curve after buckling. Mechanical character of instability after buckling is analyzed and computed. Analysis expression is given; the geometric features of the curve in the equilibrium case after buckling is analyzed and computed. The results indicate that the maximum deflection after buckling and the closing deflection curve are two completely different buckling states.
  • [1] 李银山. Maple材料力学. 北京: 机械工业出版社, 2009%(in Chinese))
    [2] Manning RS, Hoffman KA. Stability of n-covered circles for an elastic rod with planar intrinsic curvature. Journal of Elasticity, 2001, 62(1): 1-23
    [3] 刘延柱.弹性杆基因模型的力学问题. 力学与实践, 2003, 25(1): 1-5 (Liu Yanzhu. Mechanical problems on elastic rod model of DNA. Mechanics in Engineering, 2003, 25(1): 1-5(in Chinese))
    [4] 王晓艳, 苏飞, 张铮.弹性杆的大变形分析及全国数模大赛题的解答. 力学与实践, 2010, 32(6): 94-95 (Wang Xiaoyan, Su Fei, Zhang Zheng. Analysis of large deflections of bucked bars and the solution to the 2010 mathematical modeling contest of China. Mechanics in Engineering, 2010, 32(6): 94-95(in Chinese))
    [5] 刘鸿文. 高等材料力学. 北京: 高等教育出版社, 1985
计量
  • 文章访问数:  1471
  • HTML全文浏览量:  10
  • PDF下载量:  815
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-27
  • 修回日期:  2011-06-14
  • 发布日期:  2012-02-14

目录

    /

    返回文章
    返回