小行星捕获轨道优化研究综述

宝音贺西, 包长春

宝音贺西, 包长春. 小行星捕获轨道优化研究综述[J]. 力学与实践, 2019, 41(5): 511-519. DOI: 10.6052/1000-0879-19-106
引用本文: 宝音贺西, 包长春. 小行星捕获轨道优化研究综述[J]. 力学与实践, 2019, 41(5): 511-519. DOI: 10.6052/1000-0879-19-106
BAOYIN Hexi, BAO Changchun. REVIEW ON OPTIMIZATION OF ASTEROID CAPTURE ORBITS[J]. MECHANICS IN ENGINEERING, 2019, 41(5): 511-519. DOI: 10.6052/1000-0879-19-106
Citation: BAOYIN Hexi, BAO Changchun. REVIEW ON OPTIMIZATION OF ASTEROID CAPTURE ORBITS[J]. MECHANICS IN ENGINEERING, 2019, 41(5): 511-519. DOI: 10.6052/1000-0879-19-106
宝音贺西, 包长春. 小行星捕获轨道优化研究综述[J]. 力学与实践, 2019, 41(5): 511-519. CSTR: 32047.14.1000-0879-19-106
引用本文: 宝音贺西, 包长春. 小行星捕获轨道优化研究综述[J]. 力学与实践, 2019, 41(5): 511-519. CSTR: 32047.14.1000-0879-19-106
BAOYIN Hexi, BAO Changchun. REVIEW ON OPTIMIZATION OF ASTEROID CAPTURE ORBITS[J]. MECHANICS IN ENGINEERING, 2019, 41(5): 511-519. CSTR: 32047.14.1000-0879-19-106
Citation: BAOYIN Hexi, BAO Changchun. REVIEW ON OPTIMIZATION OF ASTEROID CAPTURE ORBITS[J]. MECHANICS IN ENGINEERING, 2019, 41(5): 511-519. CSTR: 32047.14.1000-0879-19-106

小行星捕获轨道优化研究综述

详细信息
    作者简介:

    1) E-mail: baoyin@tsinghua.edu.cn
    宝音贺西,清华大学航天航空学院教授,博导,国家杰出青年基金获得者。1999 年哈尔滨工业大学飞行器设计专业博士毕业,后在日本、英国等地工作。2005 年回国后于清华大学工作,开展航天器动力学与控制基础理论和重大航天工程中的应用研究。2014—2018连续五年进入Elsevier 公布的中国高被引学者榜单(航天工程方向)。获国防科技进步一等奖、上海市科技进步一等奖;其小行星捕获、空间碎片发动机等成果两度被MITtech Review评论,引起国际广泛关注。攻克载人航天远距离最优导引的关键技术,研究成果应用于我国交会对接工程。AIAA 终身高级会员、Astrodynamics主编、Science China (Technology)、《航天器环境工程》《飞控与探测》《动力学与控制学报》等编委。培养的博士生5 人获得清华大学优秀博士论文奖,2 人获得全国优秀博士论文奖。

    包长春: 2) E-mail: imut007@163.com

    通讯作者:

    宝音贺西

    包长春

  • 中图分类号: V412.4

REVIEW ON OPTIMIZATION OF ASTEROID CAPTURE ORBITS

More Information
    Corresponding author:

    BAOYIN Hexi

    BAO Changchun

  • 摘要: 小行星捕获对研究行星起源、地球生命来源、防御小行星撞击地球和开采行星矿产资源具有重要的意义。由于现有的推进器能力不足,小行星捕获任务中优化小行星捕获所需要的速度增量是任务成败的关键。本文分别从利用引力辅助轨道优化、连续小推力轨迹优化、小行星捕获任务轨道优化设计及小行星临时捕获等4 个方向介绍小行星捕获轨道优化方面国内外研究进展及现状。基于对上述研究现状的分析,尝试展望小行星捕获轨道优化研究的未来发展趋势。
    Abstract: The asteroid is of great significance for studying the formation of planets, the origin of life on the Earth, the defense against the collision of asteroids to the Earth and the mining on asteroids. Due to the insufficient capacity of the existing propulsion technology, the velocity increment needed to optimize the asteroid capture is the key for a successful capture mission. This paper reviews the capture orbit optimization method for asteroid and the extended capture period with the impulse thrust and lowthrust propulsions, including the strategy to capture asteroids by the gravity assisted and resonant orbital techniques, the continuous low thrust and temporary asteroid capture, and the scheme of extending the capture period.
  • [1]

    Cottin H, Kotler JM, Bartik K , et al. Astrobiology and the possibility of life on Earth and elsewhere. Space Science Reviews, 2017,209(1-4):1-42

    [2]

    Brusatte SL, Butler RJ, Barrett PM , et al. The extinction of the dinosaurs. Biological Reviews, 2015,90(2):628-642

    [3]

    Rumpf C, Lewis HG, Atkinson PM . Global impact distribution of asteroids and affected population. 2015 IAA Planetary Defense Conference, Frascati, Roma, 2015

    [4]

    Lindsay SS, Marchis F, Emery JP , et al. Composition, mineralogy, and porosity of multiple asteroid systems from visible and near-infrared spectral data. Icarus, 2015,247:53-70

    [5]

    Wilkerson JJ . Celestial gold mines: mining for natural resources on asteroids. J. Animal & Envtl. L., 2017,9:116

    [6]

    Johnson TV, Yeates CM, Young R . Space science reviews volume on Galileo mission overview. Space Science Reviews, 1992,60(1-4):3-21

    [7]

    Lauretta DS, Balram-Knutson SS, Beshore E , et al. OSIRIS-REx: sample return from asteroid (101955) Bennu. Space Science Reviews, 2017,212(1-2):925-984

    [8]

    Gálvez A, Carnelli I . ESA’s Don Quijote Mission: an opportunity for the investigation of an artificial impact crater on an asteroid. 25th International Symposium on Space Technology and Science, Kanazawa, Japan, 2006

    [9]

    Fujiwara A, Kawaguchi J, Yeomans DK , et al. The rubblepile asteroid Itokawa as observed by Hayabusa. Science, 2006,312(5778):1330-1334

    [10] 崔平远 . 深空探测: 空间拓展的战略制高点. 人民论坛·学术前沿, 2017(5):13-18

    Cui Pingyuan . Deep space exploration: the strategic apex of spatial expansion.Frontiers, 2017(5):13-18 (in Chinese)

    [11] 叶培建, 黄江川, 孙泽洲 等. 中国月球探测器发展历程和经验初探. 中国科学: 技术科学, 2014,44(6):543-558

    Ye Peijian, Huang Jiangchuan, Sun Zezhou , et al. The process and experience in the development of Chinese lunar probe. Science China Technological Science, 2014,44(6):543-558 (in Chinese)

    [12]

    Strange N, Landau D, McElrath T , et al. Overview of mission design for NASA asteroid redirect robotic mission concept. The 33rd International Electric Propulsion Conference, Washington, DC, 2013

    [13]

    Shirley DL . The mariner 10 mission to venus and mercury. Acta Astronautica, 2003,53(4-10):375-385

    [14]

    Koblik V, Polyakhova E, Sokolov L . Controlled solar sail transfers into near-sun regions combined with planetary gravity-assist flybys. Celestial Mechanics and Dynamical Astronomy, 2003,86(1):59-80

    [15]

    Sims JA, Longuski JM, Staugler AJ . V1 leveraging for interplanetary missions: Multiple-revolution orbit techniques. Journal of Guidance, Control, and Dynamics, 1997,20(3):409-415

    [16]

    Strange NJ, Longuski JM . Graphical method for gravityassist trajectory design. Journal of Spacecraft and Rockets, 2002,39(1):9-16

    [17]

    Niehoff JC . Gravity-assisted trajectories to solar-system targets. Journal of Spacecraft and Rockets, 1966,3(9):1351-1356

    [18]

    Casalino L, Colasurdo G . Mars gravity assist to improve missions towards main-belt asteroids. Acta Astronautica, 2003,53(4-10):521-526

    [19]

    Vasile M, Pascale PD . Preliminary design of multiple gravity-assist trajectories. Journal of Spacecraft and Rockets, 2006,43(4):794-805

    [20]

    Chen Y, Baoyin H, Li J . Accessibility of main-belt asteroids via gravity assists. Journal of Guidance, Control, and Dynamics, 2014,37(2):623-632

    [21]

    Qi Y, Xu S . Mechanical analysis of lunar gravity assist in the Earth-Moon system. Astrophysics and Space Science, 2015,360(2):55

    [22]

    Yang H, Li J, Baoyin H . Low-cost transfer between asteroids with distant orbits using multiple gravity assists. Advances in Space Research, 2015,56(5):837-847

    [23]

    Xu R, Cui P, Qiao D , et al. Design and optimization of trajectory to near-Earth asteroid for sample return mission using gravity assists. Advances in Space Research, 2007,40(2):220-225

    [24] 崔平远, 乔栋, 崔祜涛 等. 小行星探测目标选择与转移轨道方案设计. 中国科学: 技术科学, 2010,40(6):677-685

    Cui Pingyuan, Qiao Dong, Cui Hutao , et al. Target selection and transfer trajectories design for exploring asteroid mission. Science China Technological Science, 2010,40(6):677-685 (in Chinese)

    [25] 侯艳伟, 岳晓奎, 张莹 . 基于脉冲机动的引力辅助深空探测轨道设计. 西北工业大学学报, 2012,30(4):491-496

    Hou Yanwei, Yue Xiaokui, Zhang Ying . Design of gravityassist trajectory based impulsive maneuver. Journal of Northwestern Polytechnical University, 2012,30(4):491-496 (in Chinese)

    [26] 杨洪伟, 陈杨, 李俊峰 . 精确动力学模型中的行星引力辅助轨道设计. 中国空间科学技术, 2013(2):1-6

    Yang Hongwei, Chen Yang, Li Junfeng . Trajectory design of gravity assist in the high-fidelity dynamic model.Chinese Space Science and Technology, 2013(2):1-6 (in Chinese)

    [27] 乔栋, 崔祜涛, 崔平远 等. 气动-引力辅助转移轨道研究及在星际探测中的应用. 宇航学报, 2005,26(5):541-546

    Qiao Dong, Cui Hutao, Cui Pingyuan , et al. Study of aerogravity assist transfer trajectory and application in interplanetary exploration missions. Journal of Astronautics, 2005,26(5):541-546 (in Chinese)

    [28] 谭高威, 高扬, 杨新 . 深空探测器多次引力辅助转移轨道全局搜索. 航天器工程, 2012,21(2):18-27

    Tan Gaowei, Gao Yang, Yang Xin . Global search of multiple gravity assist transfer trajectories for deep space probes. Spacecraft Engineering, 2012,21(2):18-27 (in Chinese)

    [29]

    Diehl R, Kaplan D, Penzo P . Satellite tour design for the Galileo mission. 21st Aerospace Sciences Meeting, Reno, Nevada, 1983

    [30]

    Sanchez Cuartielles JP, Alessi EM, Garcia Yarnoz D , et al. Earth resonant gravity assists for asteroid retrieval missions. 64th International Astronautical Congress, Beijing, China, 2013

    [31]

    Vaquero M, Howell KC . Leveraging resonant-orbit manifolds to design transfers between libration-point orbits. Journal of Guidance, Control, and Dynamics, 2014,37(4):1143-1157

    [32] 李小玉, 郑建华 . 太阳中纬度探测共振借力轨道设计. 北京航空航天大学学报, 2013(5):574-579

    Li Xiaoyu, Zheng Jianhua . Resonant gravity-assist trajectory design for Sun’s middle latitude exploration.Journal of Beijing University of Aeronautics and Astronautics, 2013(5):574-579 (in Chinese)

    [33] 刘林 . 轨道共振问题. 天文学进展, 1986(1):43-52

    Liu Lin . Orbital resonance.Progress in Astronomy, 1986(1):43-52 (in Chinese)

    [34]

    Haberkorn T, Martinon P, Gergaud J . Low thrust minimum-fuel orbital transfer: a homotopic approach. Journal of Guidance, Control, and Dynamics, 2004,27(6):1046-1060

    [35]

    Zhang P, Li J, Baoyin H , et al. A low-thrust transfer between the Earth-Moon and Sun-Earth systems based on invariant manifolds. Acta Astronautica, 2013,91:77-88

    [36]

    McConaghy TT, Debban TJ, Petropoulos AE , et al. Design and optimization of low-thrust trajectories with gravity assists. Journal of spacecraft and rockets, 2003,40(3):380-387

    [37]

    Mantia ML, Casalino L . Indirect optimization of low-thrust capture trajectories. Journal of Guidance, Control, and Dynamics, 2006,29(4):1011-1014

    [38] 李俊峰, 蒋方华 . 连续小推力航天器的深空探测轨道优化方法综述. 力学与实践, 2011,33(3):1-6

    Li Junfeng, Jiang Fanghua . Survey of low-thrust trajectory optimization methods for deep space exploration. Mechanics in Engineering, 2011,33(3):1-6 (in Chinese)

    [39]

    Jiang F, Baoyin H, Li J . Practical techniques for low-thrust trajectory optimization with homotopic approach. Journal of Guidance, Control, and Dynamics, 2012,35(1):245-258

    [40] 唐高, 蒋芳华 . 多小行星探测的连续小推力轨迹优化研究. 北京力学学会第二十二届学术年会, 北京, 2016
    [41] 尚海滨, 崔平远, 徐瑞 等. 基于高斯伪光谱的星际小推力转移轨道快速优化. 宇航学报, 2010(4):1005-1011

    Shang Haibin, Cui Pingyuan, Xu Rui , et al. Fast optimization of interplanetary low-thrust transfer trajectory based on Gauss pseudospectral algorithm.Journal of Astronautics, 2010(4):1005-1011 (in Chinese)

    [42] 潘迅, 泮斌峰 . 基于同伦方法三体问题小推力推进转移轨道设计. 深空探测学报, 2017,4(3):270-275

    Pan Xun, Pan Binfeng . Optimization of low-thrust transfers using homotopic method in the restricted three-body problem. Journal of Deep Space Exploration, 2017,4(3):270-275 (in Chinese)

    [43] 郭铁丁 . 深空探测小推力轨迹优化的间接法与伪谱法研究. [博士论文]. 北京: 清华大学, 2012

    Guo Tieding . Study of indirect and pseudospectral methods for low thrust trajectory optimization in deep space exploration. [PhD Thesis]. Beijing: Tsinghua University, 2012 ( in Chinese)

    [44]

    Baoyin H, Chen Y, Li JF . Capturing near earth objects. Research in Astronomy and Astrophysics, 2010,10(6):587

    [45]

    Sanchez JP, McInnes C . Assessment on the feasibility of future shepherding of asteroid resources. Acta Astronautica, 2012,73:49-66

    [46]

    Massonnet D, Meyssignac B . A captured asteroid: our David’s stone for shielding earth and providing the cheapest extraterrestrial material. Acta Astronautica, 2006,59(1-5):77-83

    [47]

    Fast L . Capture a 2 m diameter asteroid, a mission proposal. AIAA SPACE 2011 Conference & Exposition, Long Beach, California, 2011

    [48]

    Brophy JR, Gershman R, Landau D , et al. Feasibility of capturing and returning small near-Earth Asteroids. 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 2011

    [49]

    Ross SD . Near-Earth asteroid mining. Space Industry Report, 2001

    [50]

    Sanchez Cuartielles JP, Garcia Yarnoz D, McInnes C . Near-Earth asteroid resource accessibility and future capture mission opportunities. Global Space Exploration Conference, Washington, DC, 2012

    [51]

    Bazzocchi M, Emami MR . A systematic assessment of asteroid redirection methods for resource exploitation. Journal of Texture Studies, 2013,15(2):173-178

    [52]

    Borum A, Burns J, Wentzel P , et al. Capturing near-Earth asteroids using a binary exchange mechanism. Virginia Space Grant Consortium Student Research Conference, Williamsburg, VA, 2012.

    [53]

    Tsui KH . Satellite capture in a four-body system. Planetary and Space Science, 2002,50(3):269-276

    [54]

    Liu X, McInnes C, Ceriotti M . Strategies to engineer the capture of a member of a binary asteroid pair using the planar parabolic restricted three-body problem. Planetary and Space Science, 2018,161:5-25

    [55]

    Tan M, McInnes C, Ceriotti M . Low-energy near Earth asteroid capture using Earth flybys and aerobraking. Advances in Space Research, 2018,61(8):2099-2115

    [56]

    Tan M, McInnes C, Ceriotti M . Low-energy near-Earth asteroid capture using momentum exchange strategies. Journal of Guidance, Control, and Dynamics, 2017,41(3):632-643

    [57]

    Mingotti G, Sánchez JP, McInnes CR . Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun-Earth circular restricted three-body problem. Celestial Mechanics and Dynamical Astronomy, 2014,120(3):309-336

    [58]

    Yárnoz DG, Sanchez JP, McInnes CR . Easily retrievable objects among the NEO population. Celestial Mechanics and Dynamical Astronomy, 2013,116(4):367-388

    [59]

    Tan M, McInnes CR, McInnes CR . Direct and indirect capture of near-Earth asteroids in the Earth-Moon system. Celestial Mechanics and Dynamical Astronomy, 2017,129(1-2):57-88

    [60]

    Ceriotti M, Sanchez JP . Control of asteroid retrieval trajectories to libration point orbits. Acta Astronautica, 2016,126:342-353

    [61]

    Tang G, Jiang F . Capture of near-Earth objects with lowthrust propulsion and invariant manifolds. Astrophysics and Space Science, 2016,361(1):10

    [62]

    He S, Zhu Z, Peng C , et al. Optimal design of near-Earth asteroid sample-return trajectories in the Sun-Earth-Moon system. Acta Mechanica Sinica, 2016,32(4):753-770

    [63]

    Bao C, Yang H, Barsbold B , et al. Capturing near-Earth asteroids into bounded Earth orbits using gravity assist. Astrophysics and Space Science, 2015,360(2):61

    [64]

    Gong S, Li J . Asteroid capture using lunar flyby. Advances in Space Research, 2015,56(5):848-858

    [65]

    Qi Y, de Ruiter A . Low-energy transfers to long-term capture in the Earth-Moon system. Acta Astronautica, 2018,152:836-849

    [66]

    Gong S, Li J . Planetary capture and escape in the planar four-body problem. Astrophysics and Space Science, 2015,357(2):155

    [67]

    Lladó N, Ren Y, Masdemont JJ , et al. Capturing small asteroids into a Sun-Earth Lagrangian point. Acta Astronautica, 2014,95:176-188

    [68]

    Hasnain Z, Lamb CA, Ross SD . Capturing near-Earth asteroids around Earth. Acta Astronautica, 2012,81(2):523-531

    [69]

    Granvik M, Vaubaillon J, Jedicke R . The population of natural Earth satellites. Icarus, 2012,218(1):262-277

    [70]

    Jedicke R, Bolin B, Bottke WF , et al. Small asteroids temporarily captured in the Earth-Moon system. Proceedings of the International Astronomical Union, 2015,10(S318):86-90

    [71]

    Vieira Neto E, Winter OC . Gravitational capture of asteroids by gas drag. Mathematical Problems in Engineering, 2009,2009:11

    [72]

    Fedorets G, Granvik M, Jedicke R . Orbit and size distributions for asteroids temporarily captured by the Earth-Moon system. Icarus, 2017,285:83-94

    [73]

    Chyba M, Granvik M, Jedicke R , et al. Time-minimal orbital transfers to temporarily-captured natural Earth satellites. Optimization and Control Techniques and Applications, 2014,86:213-235

    [74]

    Haapala AF, Howell KC . Trajectory design strategies applied to temporary comet capture including Poincaré maps and invariant manifolds. Celestial Mechanics and Dynamical Astronomy, 2013,116(3):299-323

    [75]

    Urrutxua H, Scheeres DJ, Bombardelli C , et al. Temporarily captured asteroids as a pathway to affordable asteroid retrieval missions. Journal of Guidance, Control, and Dynamics, 2015,38(11):2132-2145

    [76]

    Anderson BD, Lo M . Dynamics of asteroid 2006 RH120: temporary capture phase. 2018 Space Flight Mechanics Meeting, Kissimmee, Florida, 2018

  • 期刊类型引用(1)

    1. 刘豪. 基于数据挖掘的小行星探测轨道误差分析与校正. 自动化技术与应用. 2023(03): 11-14+19 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  857
  • HTML全文浏览量:  34
  • PDF下载量:  502
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-03-18
  • 发布日期:  2019-10-19

目录

    /

    返回文章
    返回