1 高世桥, 刘海鹏. 微机电系统力学(第1版). 北京: 国防工业出版社, 2008 2 尹春松, 杨洋. 基于非局部铁木辛柯梁模型的碳纳米管弯曲特性研究. 固体力学学报, 2015 (S1): 165-169 3 尹莉. 微尺度下结构的静动力学行为研究. [博士论文]. 武汉:华中科技大学, 2010 4 Eringen AC.Nonlocal Continuum Field Theories. New York: Springer Science & Business Media, 2002 5 Yang F, Chong ACM, Lam DCC, et al.Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002, 39(10): 2731-2743 6 Mindlin RD.Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 1964, 16(1): 51-78 7 Reddy JN, Pang SD.Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of Applied Physics, 2008, 103(2): 023511 8 Kong S, Zhou S, Nie Z, et al.Static and dynamic analysis of micro beams based on strain gradient elasticity theory. International Journal of Engineering Science, 2009, 47(4): 487-498 9 Lim CW, Zhang G, Reddy JN.A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 2015, 78: 298-313 10 Li L, Hu Y, Li X.Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. International Journal of Mechanical Sciences, 2016, 115: 135-144 11 Li L, Hu Y.Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. International Journal of Engineering Science, 2015, 97: 84-94 12 Ebrahimi F, Barati MR.Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory. Applied Physics A, 2016, 122(9): 843 13 Ebrahimi F, Barati MR, Dabbagh A.A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. International Journal of Engineering Science, 2016, 107: 169-182 14 Simsek M.Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. International Journal of Engineering Science, 2016, 105: 12-27 15 Zhang B, He Y, Liu D, et al.Size-dependent functionally graded beam model based on an improved third-order shear deformation theory. European Journal of Mechanics-A/Solids, 2014, 47: 211-230 16 Reddy JN.Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 2007, 45(2): 288-307 17 Thai HT.A nonlocal beam theory for bending, buckling, and vibration of nanobeams. International Journal of Engineering Science,2012,52:56-64 18 Kong S, Zhou S, Nie Z, et al.The size-dependent natural frequency of Bernoulli-Euler micro-beams. International Journal of Engineering Science, 2008, 46(5): 427-437 |