力学与实践, 2020, 42(4): 424-429 DOI: 10.6052/1000-0879-20-034

应用研究

纳米粒子与肺泡表面磷脂膜相互作用的力学机理研究 1)

焦凤轩, 桑建兵,2), 刘朝阳, 李洋

河北工业大学机械工程学院,天津 300401

THE MECHANISM OF THE INTERACTION BETWEEN NANOPARTICLE AND LIPIDS MONOLAYER OF PULMONARY SURFACTANT 1)

JIAO Fengxuan, SANG Jianbing,2), LIU Zhaoyang, LI Yang

School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China

通讯作者: 2)桑建兵,教授。E-mail:sangjianbing@126.com

责任编辑: 胡漫

收稿日期: 2020-01-21   网络出版日期: 2020-08-20

基金资助: 1)天津市科技计划项目.  16JCTPJC53100
河北省自然科学基金.  A2020202015

Received: 2020-01-21   Online: 2020-08-20

作者简介 About authors

摘要

人体在吸入纳米颗粒时肺部的第一道生物屏障是肺表面活性剂(lung surfactant, LS),吸入的纳米颗粒可以到达肺部深处,从而干扰肺部的生物物理性能。目前关于金纳米粒子与LS单层的相互作用的机制研究及金纳米粒子对肺部功能的影响尚不清楚。本文使用粗粒化的分子动力学方法,研究了金纳米粒子与LS单层膜在纳米尺度上的相互作用,观察到金纳米粒子的存在使得单层膜的结构变形,改变了膜的生物物理性能,并且不同形状的纳米粒子对单层膜的影响也不相同。这些发现有助于识别空气中的纳米粒子对肺部的潜在影响。

关键词: 金纳米粒子 ; 肺表面活性剂 ; 粗粒化 ; 分子动力学

Abstract

The inhaled nanoparticles (NPs) are first met by the biological barrier inside the alveolus known as the lung surfactant (LS). They can reach deep into the lung and interfere with the biophysical properties of the lung components. The interaction mechanisms of the gold nanoparticles (AuNPs) with the LS monolayer and the consequences of the interactions on the lung function are not well understood. Coarse-grained molecular dynamics simulations are carried out to study the interaction between the AuNPs and the LS monolayers at the nanoscale. It is observed that the presence of the AuNPs deforms the monolayer structure, changes the biophysical properties of the LS monolayer, and the results also indicate that the AuNPs with different shapes have different effects on the LS monolayer. These findings could help to identify the possible consequence of the airborne NPs inhalation.

Keywords: gold nanoparticles ; pulmonary surfactant ; coarse-grained ; molecular dynamics

PDF (7510KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

焦凤轩, 桑建兵, 刘朝阳, 李洋. 纳米粒子与肺泡表面磷脂膜相互作用的力学机理研究 1). 力学与实践[J], 2020, 42(4): 424-429 DOI:10.6052/1000-0879-20-034

JIAO Fengxuan, SANG Jianbing, LIU Zhaoyang, LI Yang. THE MECHANISM OF THE INTERACTION BETWEEN NANOPARTICLE AND LIPIDS MONOLAYER OF PULMONARY SURFACTANT 1). MECHANICS IN ENGINEERING[J], 2020, 42(4): 424-429 DOI:10.6052/1000-0879-20-034

目前纳米颗粒(nanoparticles, NPs)已广泛地应用于纳米医学、药物传递、疾病检测和生物传感等领域[1]。虽然NPs具有推动新技术的潜力,但先前的研究也 表明了它们对人类健康的潜在风险。其中一个健康风险是空气中NPs的摄取[2],NPs与肺部的相互作用可以改变呼吸过程中肺部 成分的正常特性。空气中颗粒物被吸入的概率主要由颗粒物的大小决定,小颗粒物(如直径小于100 nm的颗粒物)更容易被吸入肺部深处,穿透上皮细胞进入血流[3]。经常吸入空气中的NPs会增加肺部老化的可能性,导致肺部功 能障碍,并可诱发严重的肺部疾病,如哮喘、肺癌、急性呼吸窘迫综合征等。吸入的NPs与肺表面活性物质单层(pulmonary surfactant, PS)相互作用,可能对肺表面活性物质层造成严重损伤。此外,在实验研究中发现,吸入的NPs可能与表面活性成分相互 作用,抑制肺功能正常,诱发肺部疾病[4]。因此,需要进行分子水平的研究,以探索吸入NPs引起的PS的结构变化,并帮助追 踪这些NPs对常见肺部活动的不良影响。

PS主要由磷脂(饱和和不饱和)、胆固醇和少量蛋白质组成,它们共同在肺泡内的气-水界面形成稳定的单层[5]。大约一半的 脂质由饱和脂质(DPPC)组成,这是一种饱和的磷脂,在生理温度下可以紧紧地包裹在单分子层中,使PS单分子层能够在 压缩[6]时达到0左 右的表面张力而不会塌缩。其他的表面活性剂脂质,包括不饱和脂质(POPG)能使单分子层流体化。呼吸过程中,肺泡表面积不断扩大和压 缩,PS在空气与水界面达到20$\sim$25 mN/m的平衡表面张力[7]

实验研究和计算研究[8]提供了关于PS单分子层的各种生物物理现象的信息,如相行为变化、表面张力、表面压力、单位脂质面 积(area-per-lipid, APL)、PS组分密度等。越来越多的基于分子动力学模拟的研究发现,当APL从0.49$\sim$0.55 nm$^{2}$降至0.46$\sim $0.47 nm$^{2}$时,气水界面的PS单分子层由液态冷凝相(liquid condensed, LC)和液态膨胀相(liquid expansion, LE)[9]共存变为液态冷凝(LC)相。同样,单层膜的表面张力与APL[10]成正比,在吸入时达到平衡值约23 mN/m,呼气时约降至0。PS的主要成分DPPC在大约41摄氏度时经历了从液态膨胀相和液态冷凝相(LE$+$LC)共存到LC相的相变。在 生理温度下,PS中存在的不饱和脂肪的相变温度通常比饱和脂肪的相变温度低,因此处于LE相。

1 材料和方法

本文使用的金纳米粒子对应的粗粒化类型为C1(如图1),肺表面活性剂膜的粗粒化模型使用DPPC(二棕榈酰磷脂酰胆碱),POPG(1-棕榈 酰基-2-油酰基磷酸酰甘油)和CHOL(胆固醇)3种脂质分子混合组成。粗粒化DPPC分子由12个粗粒子组成,包括一个亲水性的头基(NC3, PO4),甘 油酯(GL1, GL2)和两条疏水性的尾链(C1A-C2A-C3A-C4A, CAB-C2B-C3B-C4B)。粗粒化POPG分子由12个CG粒子组成,包括一个亲水性的头基(GL0,PO4),甘 油酯(GL1, GL2)和两条疏水性的尾链(C1A-D2A-C3A-C4A, CAB-C2B-C3B-C4B),其中一条尾链上有一个碳碳双键。CHOL分子由8个粗粒子组成,包括一个亲水性的头基(ROH),一个固醇环体(R1-R2-R3-R4-R5)和一个 疏水性的尾部(C1-C2)。水分子W、钠离子NA$^+$和氯离子CL$^-$均由一个粗粒子表示,初始的单层膜的模型如图2所示。

图1

图1   四种不同形状的金纳米粒子


图2

图2   表面活性剂膜及其组成部分的粗粒化模型


本文使用insasne.py脚本构建初始双层膜模型[11],SP-B蛋白质使用martini.py脚本进行粗粒化,DPPC:POPG:CHOL的摩尔 比为7:3:1,每一层有1023个脂质分子,然后通过旋转和平移得到两个单层膜。膜平面平行于系统的$xy$平面,膜法线方向为体系的$z$轴方向,两个 单层膜之间相距大约21 nm,一个25 nm$\times $25 nm$\times $21 nm的水盒被放置在两个单层之间,水盒中大约有100000个粗粒化的水粒子,然后在水盒中加入浓度为0.15 mol/L的NaCl,这与生理盐水的浓度近似,由于POPG分子的头基带负电荷,因此用同样数量的粗粒化钠离子来取代水粒子,从而使整个系统 呈电中性,在水盒存在时,脂质的极性头基朝向水相,然后将整个体系放置在一个25 nm$\times$25 nm$\times $60 nm的盒子中,此时盒子中存在大约34 nm厚的真空,最后将金纳米粒子放置在单层膜上方小于1 nm的位置处。

在健康的人体中肺表面活性剂膜表面张力保持在20$\sim$25 mN/m的范围内,称为平衡表面张力。在呼气时肺泡表面压缩,表面活性剂膜的表面张力减小到0。本文构建了两种具有不同初始表面 张力的单层体系,分别为0和23 mN/m,对应APL为0.48 nm$^{2}$和0.55 nm$^{2}$,代表了人在呼吸时肺表面活性剂膜的收缩相和扩张相。首先脂质单层体系在没有放置金纳米粒子的情况下单独平衡500 ns。当脂质单层体系平衡后,将金纳米粒子与脂质单层膜放置在一起,在正则系统下运行750 ns的模拟。

本文所有的模拟均使用Gromacs5.0.7 [12]软件进行,模拟结果的可视化使用VMD1.9.3[13]软件进行,本文对体系的所有方向 均使用周期性边界条件(periodic boundary condition, PBC)。范德华相互作用的截断距离设置为1.2 nm,且该作用在0.9$\sim$1.2 nm之间平滑地过渡到0以减少截断噪音。对于库仑力作用,截断距离设置为1.2 nm。在平衡前,首先使用最陡下降算法对体系进行能量最小化。对所有的模拟,均使用蛙跳式(leapfrog)算法积分的牛顿运动方 程,积分步长为20 fs,在NVT(恒定粒子数、体积和温度)系统下使用v-rescale方法进行温度耦合,使得体系逐步升温至310 K(接近DPPC分子的相变温度),耦合常数为1 ps,脂质分子、水和离子、蛋白质、金纳米粒子均独立耦合。在NPT(恒定粒子数、压力和温度)系统下使用表面张力耦合方法进行压 力耦合,表面张力分别设置为0和23 mN/m,耦合常数为1 ps,在$xy$方向压缩系数为$5.0\times 10^{-7}$ MPa$^{-1}$,在$z$方向将压力控制为0。

2 结果与讨论

APL被用来检测脂质相变和单层膜是否平衡,也可以判断单层膜上脂质分子排列的疏密程度。在没有纳米粒子的情况下,当单层膜达 到平衡后,单层膜通过压缩和膨胀会自发地达到0和23 mN/m的表面张力。计算得出表面张力为0的单层膜APL为0.48 nm$^{2}$,此时脂质分子处在LC相,表面张力为23 mN/m的单层膜APL为0.55 nm$^{2}$,此时脂质分子处在LC+LE相,张力减小时表面积减小了大约13%,由图3可以看出,在张力较小时单层膜上的脂质分子排布比张力较大时更加有序。这 些结果表明活性剂单层膜在表面张力为0时处在LC相,并且当表面张力升高到23 mN/m时会转化到LC+LE相。

图3

图3   两种不同初始表面张力的活性剂单层膜的快照(俯视图)。在0时为液态收缩相,在23 mN/m时为液态收缩和液态扩张的混合相


表面活性剂单层是由饱和脂质和不饱和脂质共同组成的,脂质的有序参数用来计算和观测单层膜的结构取向,平均脂质有序参数在$-0.5$$\sim$1之间变化($-0.5$表示脂质尾部绝对无序,1表示脂质尾部绝对有序),脂质分子的有序参数

$\begin{eqnarray} Sz=\frac12(3\langle\cos^2\theta\rangle-1) \end{eqnarray}$

其中,$Sz$表示有序参数,$\theta$是脂质尾部粒子之间的键与膜法线方向的夹角,角括号表示取一段时间上的平均值。

DPPC和POPG分子的sn1尾链和sn2尾链在膜表面张力为0和23 mN/m时的有序参数如图4所示。从图中可以看出,在相同的表面张力下,DPPC比POPG更加有序,这是因为POPG尾 链中碳碳双键的存在。另外,DPPC和POPG分子在APL较小的时候更有序。

图4

图4   在没有金纳米粒子时DPPC和POPG分子的有序参数


此前的研究[14]表明,疏水性纳米粒子可以被压缩状态的脂质单层包裹。图5显示了金纳米粒子与具有不同初始表面张力的脂质 单层作用的过程,可以看出在初始表面张力为0时,立方体状和球状AuNP可以穿过脂质单层并附着于单层下方,破坏了单层的结构。 AuNP使得单层向下凸起形成了"半囊泡"结 构,随着模拟的进行,这个半囊泡并未从脂质单层上脱落,并且脂质与纳米粒子的相互作用使得纳米粒子从单层中吸附脂质分子,进而 导致了脂质单层上孔隙的形成,使得磷脂分子的有序参数减小。由于金纳米粒子具有疏水性表面,所以脂质分子的尾部朝向纳米粒子 表面。立方体状纳米粒子至少有一个尖角,它与磷脂层的初始接触面积较小,容易穿透磷脂层,这与之前的一项研究结果类似[15]。而盘状 和棒状的AuNP均未能穿透单层,而是嵌入了单层中。在初始表面张力为23 mN/m时,四种纳米粒子均嵌入单层中,未能穿透单层。由此可以看出纳米粒子在脂质单层张力较大时不易穿过。

图5

图5   不同形状的金纳米颗粒与脂质单层(初始表面张力分别为0和23~mN/m)相互作用的动力学过程


图6为脂质单层中DPPC分子和POPG分子尾链有序参数,可以看出当APL较大时,不同形状的纳米粒子对有序参数的影响较小。当APL为0.48 nm$^{2}$时,与棒状和盘状AuNP作用的磷脂分子有序参数比与球状和立方体状AuNP作用的有序参数大的多,这是由于立方体状和球状的 纳米粒子在单层上凸起形成了半囊泡,大量磷脂分子吸附在粒子表面,从而使得有序参数变小。

图6

图6   四种不同形状的金纳米粒子对DPPC和POPG分子平均有序参数的影响(实线代表APL = 0.48 nm$^{2}$,虚线代表APL = 0.55 nm$^{2}$)


图7显示了平均有序参数随时间的变化,可以看出在APL较小时,与立方体状和球状纳米粒子作用的磷脂分子的有序参数逐渐减小,且与球 状纳米粒子作用的磷脂有序参数减小得更快,在100 ns左右便达到稳定,而与立方体状纳米粒子作用的磷脂有序参数在350 ns才达到稳定。与盘状和棒状纳米粒子作用的磷脂有序参数无明显变化。在APL较大时,有序参数均无太大变化,且与立方体状纳米粒子 作用的磷脂有序参数最小。

图7

图7   DPPC分子尾链平均有序参数随时间的变化


图8显示了四种纳米粒子与脂质分子间范德华作用的变化,范德华作用都较为稳定。APL较小时的范德华作用略大于在APL较大时的作用,因 为APL较小时脂质分子排布更致密,所以有更多的脂质分子与纳米粒子作用,且立方体状纳米粒子与脂质分子的范德华作用最大,棒状纳米 粒子与脂质分子的范德华作用最小。

图8

图8   四种不同形状的金纳米粒子与脂质单层的范德华作用随时间的变化


3 结论

本文通过粗粒化分子动力学模拟的方法,研究了不同形状的金纳米粒子与磷脂单层膜之间的相互作用。结果表明,立方体状和球状的金纳米粒子在较小的初始表面张力下可以穿过磷脂单层并附着于单层下方,盘状和棒状的金粒子在两种表面张力下均嵌入磷脂单层,未能穿过单层。立方体状和球状的金纳米粒子对磷脂分子有序参数的影响更加显著。本文的研究从分子水平上表明了吸入金纳米粒子可能产生的后果,对未来关于金纳米粒子作为污染物及药物载体研究提供了参考。

(责任编辑: 胡漫)

参考文献

Yeh YC, Creran B, Rotello VM .

Gold nanoparticles: preparation, properties, and applications in bionanotechnology

Nanoscale, 2012,4(6):1871-1880

DOI      URL     PMID      [本文引用: 1]

Gold nanoparticles (AuNPs) are important components for biomedical applications. AuNPs have been widely employed for diagnostics, and have seen increasing use in the area of therapeutics. In this mini-review, we present fabrication strategies for AuNPs and highlight a selection of recent applications of these materials in bionanotechnology.

Valle RP, Wu T, Zuo YY .

Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant

ACS Nano, 2015,9(5):5413-5421

URL     PMID      [本文引用: 1]

Li N, Hao M, Phalen RF , et al.

Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects

Clinical Immunology (Orlando), 2003,109(3):250-265

[本文引用: 1]

Bakshi MS, Zhao L, Smith R , et al.

Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro

Biophysical Journal, 2008,94(3):855-868

[本文引用: 1]

Parra E, Perez GJ .

Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films

Chemistry and Physics of Lipids, 2015,185(S1):153-175

[本文引用: 1]

Zhang H, Wang YE, Fan Q , et al.

On the low surface tension of lung surfactant

Langmuir, 2011,27(13):8351-8358

DOI      URL     PMID      [本文引用: 1]

Natural lung surfactant contains less than 40% disaturated phospholipids, mainly dipalmitoylphosphatidylcholine (DPPC). The mechanism by which lung surfactant achieves very low near-zero surface tensions, well below its equilibrium value, is not fully understood. To date, the low surface tension of lung surfactant is usually explained by a squeeze-out model which predicts that upon film compression non-DPPC components are gradually excluded from the air-water interface into a surface-associated surfactant reservoir. However, detailed experimental evidence of the squeeze-out within the physiologically relevant high surface pressure range is still lacking. In the present work, we studied four animal-derived clinical surfactant preparations, including Survanta, Curosurf, Infasurf, and BLES. By comparing compression isotherms and lateral structures of these surfactant films obtained by atomic force microscopy within the physiologically relevant high surface pressure range, we have derived an updated squeeze-out model. Our model suggests that the squeeze-out originates from fluid phases of a phase-separated monolayer. The squeeze-out process follows a nucleation-growth model and only occurs within a narrow surface pressure range around the equilibrium spreading pressure of lung surfactant. After the squeeze-out, three-dimensional nuclei stop growing, thereby resulting in a DPPC-enriched interfacial monolayer to reduce the air-water surface tension to very low values.

Veldhuizen EJA, Haagsman HP .

Role of pulmonary surfactant components in surface film formation and dynamics

Biochimica et Biophysica Acta, 2000,1467(2):255-270

DOI      URL     PMID      [本文引用: 1]

Pulmonary surfactant is a mixture of lipids and proteins which is secreted by the epithelial type II cells into the alveolar space. Its main function is to reduce the surface tension at the air/liquid interface in the lung. This is achieved by forming a surface film that consists of a monolayer which is highly enriched in dipalmitoylphosphatidylcholine and bilayer lipid/protein structures closely attached to it. The molecular mechanisms of film formation and of film adaptation to surface changes during breathing in order to remain a low surface tension at the interface, are unknown. The results of several model systems give indications for the role of the surfactant proteins and lipids in these processes. In this review, we describe and compare the model systems that are used for this purpose and the progress that has been made. Despite some conflicting results using different techniques, we conclude that surfactant protein B (SP-B) plays the major role in adsorption of new material into the interface during inspiration. SP-C's main functions are to exclude non-DPPC lipids from the interface during expiration and to attach the bilayer structures to the lipid monolayer. Surfactant protein A (SP-A) appears to promote most of SP-B's functions. We describe a model proposing that SP-A and SP-B create DPPC enriched domains which can readily be adsorbed to create a DPPC-rich monolayer at the interface. Further enrichment in DPPC is achieved by selective desorption of non-DPPC lipids during repetitive breathing cycles.

Baoukina S, Monticelli L, Risselada HJ , et al.

The molecular mechanism of lipid monolayer collapse

Proceedings of the National Academy of Sciences, 2008,105(31):10803-10808

[本文引用: 1]

Baoukina S, Mendez VE, Tieleman DP .

Molecular view of phase coexistence in lipid monolayers

Journal of the American Chemical Society, 2012,134(42):17543-17553

DOI      URL     PMID      [本文引用: 1]

We used computer simulations to study the effect of phase separation on the properties of lipid monolayers. This is important for understanding the lipid-lipid interactions underlying lateral heterogeneity (rafts) in biological membranes and the role of domains in the regulation of surface tension by lung surfactant. Molecular dynamics simulations with the coarse-grained MARTINI force field were employed to model large length (~80 nm in lateral dimension) and time (tens of microseconds) scales. Lipid mixtures containing saturated and unsaturated lipids and cholesterol were investigated under varying surface tension and temperature. We reproduced compositional lipid demixing and the coexistence of liquid-expanded and liquid-condensed phases as well as liquid-ordered and liquid-disordered phases. Formation of the more ordered phase was induced by lowering the surface tension or temperature. Phase transformations occurred via either nucleation or spinodal decomposition. In nucleation, multiple domains formed initially and subsequently merged. Using cluster analysis combined with Voronoi tessellation, we characterized the partial areas of the lipids in each phase, the phase composition, the boundary length, and the line tension under varying surface tension. We calculated the growth exponents for nucleation and spinodal decomposition using a dynamical scaling hypothesis. At low surface tensions, liquid-ordered domains manifest spontaneous curvature. Lateral diffusion of lipids is significantly slower in the more ordered phase, as expected. The presence of domains increased the monolayer surface viscosity, in particular as a result of domain reorganization under shear.

Samuel S, Green FHY, Bachofen H .

Formation and structure of surface films: captive bubble surfactometry

Biochimica et Biophysica Acta, 1998,1408(2-3):180-202

DOI      URL     PMID      [本文引用: 1]

The adsorption model for soluble surfactants has been modified for suspensions of pulmonary surfactant. The dynamic adsorption behavior may be governed by a two-step process: (1) the transfer of molecules between the surface layer and the subsurface layer, which has a thickness of a few molecular diameters only; (2) the exchange of molecules between the subsurface and the bulk solution. The first step is an adsorption process and the second step is a mass transfer process. Between the subsurface and the bulk solution is an undisturbed boundary layer where mass transport occurs by diffusion only. The thickness of this boundary layer may be reduced by stirring. Rapid film formation by adsorption bursts from lipid extract surfactants, as observed in the captive bubble system, suggests that the adsorption process as defined above is accompanied by a relatively large negative change in the free energy. This reduction in the free energy is provided by a configurational change in the association of the specific surfactant proteins and the surfactant lipids during adsorption. The negative change in the free energy during film formation more than compensates for the energy barrier related to the film surface pressure. In the traditional view, the extracellular alveolar lining layer is composed of two parts, an aqueous subphase and a surfactant film, believed to be a monolayer, at the air-water interface. The existence and continuity of the aqueous subphase has recently been demonstrated by Bastacky and coworkers, and a continuous polymorphous film has recently been shown by Bachofen and his associates, using perfusion fixation of rabbit lungs with slight edema. In the present chapter, we have described a fixation technique using a non-aqueous fixation medium of perfluorocarbon and osmium tetroxide to fix the peripheral airspaces of guinea pig lungs. A continuous osmiophilic film which covers the entire alveolar surface, including the pores of Kohn, is demonstrated. By transmission electron microscopy, the surface film frequently appears multilaminated, not only in the alveolar corners or crevices, but also at the thin air-blood barrier above the capillaries. Disk-like structures or multilamellar vesicles appear partially integrated into the planar multilayered film. In corners and crevices, tubular myelin appears closely associated with the surface film. Tubular myelin, however, is not necessary for the generation of a multilaminated film. This is demonstrated in vitro by the fixation for electron microscopy of a film formed from lipid extract surfactant on a captive bubble. Films formed from relatively high surfactant concentration (1 mg/ml of phospholipid) are of variable thickness and frequent multilayers are seen. In contrast, at 0.3 mg/ml, only an amorphous film can be visualized. Although near zero minimum surface tensions can be obtained for both surfactant concentrations, film compressibility and mechanical stability are substantially better at the higher concentrations. This appears to be related to the multilaminated structure of the film formed at the higher concentration.

Sheikh IH, Neha SG, Zak EH , et al.

Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants

Biochimica et Biophysica Acta (BBA) -- Biomembranes, 2019,1861(8):1458-1467

[本文引用: 1]

Spoel DVD, Lindahl E, Hess B , et al.

GROMACS: fast, flexible, and free

Journal of Computational Chemistry, 2005,26(16):1701-1718

DOI      URL     PMID      [本文引用: 1]

This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simulations. The package includes about 100 utility and analysis programs. GROMACS is in the public domain and distributed (with source code and documentation) under the GNU General Public License. It is maintained by a group of developers from the Universities of Groningen, Uppsala, and Stockholm, and the Max Planck Institute for Polymer Research in Mainz. Its Web site is http://www.gromacs.org.

Humphrey W, Dalke A, Schulten K .

VMD: Visual molecular dynamics

Journal of Molecular Graphics, 1996,14(1):33-38

DOI      URL     PMID      [本文引用: 1]

VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids. VMD can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods. Molecules are displayed as one or more

Xu Y, Deng L, Ren H , et al.

Transport of nanoparticles across pulmonary surfactant monolayer: a molecular dynamics study

Physical Chemistry Chemical Physics, 2017,19(27):17568-17576

DOI      URL     PMID      [本文引用: 1]

Pulmonary nanodrug delivery is an emerging concept, especially for targeted lung cancer therapy. Once inhaled, the nanoparticles (NPs) acting as drug carriers need to efficiently cross the pulmonary surfactant monolayer (PSM) of lung alveoli, which act as the first barrier for external particles entering the lung. Herein, by performing molecular dynamics simulations, we study how inhaled NPs interact with the PSM, particularly focusing on the transport of NPs with different properties across the PSM. While hydrophilic NPs translocate directly across the PSM, transport of hydrophobic NPs is achieved as the PSM wraps them. Intriguingly, when hydrophilic NPs are decorated with lipid molecules (LCNPs), they are wrapped by the PSM efficiently with mild PSM perturbation. Moreover, the structure formed is like a vesicle, which will likely fuse with cell membranes to accomplish the transport of hydrophilic NPs into secondary organs. This behavior makes the LCNP a prospective candidate for pulmonary nanodrug delivery. Herein, the effects of the physical properties of LCNPs on their transport are investigated. Increasing the LCNP size promotes its wrapping by reducing the PSM bending energy. The binding energy that drives transport can be strengthened by increasing the lipid coating density and the lipid tail length, both of which also reduce the risk of PSM rupture during transport. These results should help researchers understand how to better use surface decorations to achieve efficient pulmonary entry, which may provide useful guidance for the design of nano-based platforms for inhaled drug delivery.

Yang K, Ma YQ .

Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer

Nature Nanotechnology, 2010,5(8):579-583

DOI      URL     PMID      [本文引用: 1]

Understanding how nanoparticles with different shapes interact with cell membranes is important in drug and gene delivery, but this interaction remains poorly studied. Using computer simulations, we investigate the physical translocation processes of nanoparticles with different shapes (for example, spheres, ellipsoids, rods, discs and pushpin-like particles) and volumes across a lipid bilayer. We find that the shape anisotropy and initial orientation of the particle are crucial to the nature of the interaction between the particle and lipid bilayer. The penetrating capability of a nanoparticle across a lipid bilayer is determined by the contact area between the particle and lipid bilayer, and the local curvature of the particle at the contact point. Particle volume affects translocation indirectly, and particle rotation can complicate the penetration process. Our results provide a practical guide to geometry considerations when designing nanoscale cargo carriers.

/