Zhang Weiwei, Wu Han, Zeng Xiaohui. Development and application of high-speed magnetic levitation vehicle–rail coupling experimental platform. Mechanics in Engineering, 2023, 45(4): 728-735. DOI: 10.6052/1000-0879-22-611
Citation: Zhang Weiwei, Wu Han, Zeng Xiaohui. Development and application of high-speed magnetic levitation vehicle–rail coupling experimental platform. Mechanics in Engineering, 2023, 45(4): 728-735. DOI: 10.6052/1000-0879-22-611

DEVELOPMENT AND APPLICATION OF HIGH-SPEED MAGNETIC LEVITATION VEHICLE–RAIL COUPLING EXPERIMENTAL PLATFORM

  • The vehicle-rail coupling is one of the most critical issues affecting the safety and comfort of maglev vehicles. A high-speed magnetic levitation vehicle-rail coupling experimental platform is developed and constructed to study the suspension stability at high speed. The structure is designed based on the actual electromagnet module of the maglev vehicle and the rail module, which is connected to an external exciter to simulate various rail conditions at different speeds and irregularities. The control system is modified based on the real maglev controller, chopper and sensors, and the DSPACE rapid control prototype technology is applied to monitor and modify the embedded algorithm online. A corresponding multi-body-dynamic co-simulation model with flex rail is established, which is convenient to quickly simulate the suspension stability under different control algorithms and mechanical environments. Finally, the actual real-time control performances of suspension were tested at low, medium and high speeds. Experiments showed that the platform could carry out high-speed vehicle-rail coupling tests, which provides a reliable equipment basis for the study of the vehicle-rail coupling vibration and optimization of the high-speed control algorithm.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return