YE Kangsheng, YIN Zhenwei. A p-TYPE SUPERCONVERGENT RECOVERY METHOD FOR FE ELASTIC STABILITY ANALYSIS OF EULER BEAMS1)[J]. MECHANICS IN ENGINEERING, 2018, 40(6): 647-652. DOI: 10.6052/1000-0879-18-198
Citation: YE Kangsheng, YIN Zhenwei. A p-TYPE SUPERCONVERGENT RECOVERY METHOD FOR FE ELASTIC STABILITY ANALYSIS OF EULER BEAMS1)[J]. MECHANICS IN ENGINEERING, 2018, 40(6): 647-652. DOI: 10.6052/1000-0879-18-198

A p-TYPE SUPERCONVERGENT RECOVERY METHOD FOR FE ELASTIC STABILITY ANALYSIS OF EULER BEAMS1)

More Information
  • Received Date: May 20, 2018
  • Published Date: December 14, 2018
  • This paper extends the p-type superconvergent recovery method to the finite element elastic stability analysis of Euler beams. Based on the superconvergence properties of the buckling loads and the nodal displacements in the buckling modes in regular FE solutions, a linear ordinary differential boundary value problem (BVP) is set up, which approximately governs the buckling mode in each element. This linear BVP within an element is solved with a higher order element, and a more accurate buckling mode is recovered. Then by substituting the recovered buckling mode into the Rayleigh quotient in analytic form, the buckling load is recovered. This method is simple and clear. It can improve the accuracy and the convergence rate of the buckling loads and the buckling modes significantly with a small amount of computation. Numerical examples demonstrate that this method is reliable and efficient and is worth further extending to other skeletal structures.
  • [1]
    吴亚平. 变截面压杆稳定性计算的等效刚度法. 力学与实践, 1994, 16(1): 58-60
    [2]
    杨立军, 邓志恒, 吴晓等. 变截面压杆弹性稳定的解析解. 河南理工大学学报(自然科学版), 2013, 32(1): 85-88
    [3]
    楼梦麟,李建元. 变截面压杆稳定问题半解析解. 同济大学学报(自然科学版), 2004, 32(7): 857-860
    [4]
    沈为平. 含锥形变截面压杆稳定计算的传递矩阵法. 计算力学学报, 1996, 17(3): 88-92
    [5]
    卞敬玲, 王小岗. 变截面压杆稳定计算的有限单元法. 武汉大学学报(工学版), 2002, 35(4): 282-285
    [6]
    Bathe K, Wilson EL.Numerical Methods in Finite Element Analysis. Englewood Cliffs: Prentice-Hall, 1976
    [7]
    叶康生, 曾强. 结构自由振动问题有限元新型超收敛算法研究. 工程力学,2017,34(1): 45-50, 68
    [8]
    Wiberg NE, Bausys R, Hager P.Improved eigenfrequencies and eigenmodes in free vibration analysis. Computers & Structures, 1999, 73(1-5): 79-89
    [9]
    Douglas J, Dupont T.Galerkin approximations for the two point boundary problems using continuous piecewise polynomial spaces. Numerical Mathematics, 1974, 22(2): 99-109
    [10]
    Strang G, Fix GJ.An analysis of the finite element method. Englewood Cliffs, NJ: Prentice-Hall, 1973
    [11]
    赵新中, 陈传淼. 梁问题有限元逼近的新估计及超收敛. 湖南师范大学自然科学学报, 2000, 23(4): 6-11
  • Related Articles

    [1]CAO Yijun, SUN Fangxu, FANG Zhaobo. DYNAMIC STUDY OF THE PYRAMID LATTICE SANDWICH BEAM STRUCTURE UNDER ELASTIC SUPPORT[J]. MECHANICS IN ENGINEERING. DOI: 10.6052/1000-0879-24-325
    [2]WEN Ying, ZHOU Zhiwei, HE Wenjie. LOCAL BUCKLING INVESTIGATING OF THE CENTRALLY LOADED COLUMN USING A CONTINUOUSLY SUPPORTED STRUT MODEL[J]. MECHANICS IN ENGINEERING, 2023, 45(3): 627-631. DOI: 10.6052/1000-0879-22-374
    [3]ZHANG Yuhuan, REN Yongsheng, ZHANG Jinfeng. GALERKIN APPROXIMATE SOLUTIONS OF A ROTATING CANTILEVER RAYLEIGH SHAFT 1)[J]. MECHANICS IN ENGINEERING, 2020, 42(6): 701-707. DOI: 10.6052/1000-0879-20-348
    [4]ZHOU Yan, XIAO Shifu. DYNAMICAL CHARACTERISTICS ANALYSIS FOR UNILATERAL CONSTRAINED SIMPLY SUPPORTED BEAM WITH HARMONIC WAVE EXCITATION1)[J]. MECHANICS IN ENGINEERING, 2019, 41(3): 270-277. DOI: 10.6052/1000-0879-18-468
    [5]WANG Duxin, LIU Zhanke. STUDY ON AMPLIFICATION FACTOR OF FLEXURAL BUCKLING CRITICAL LOAD OF AXIAL COMPRESSION BARS1)[J]. MECHANICS IN ENGINEERING, 2018, 40(6): 671-675. DOI: 10.6052/1000-0879-17-437
    [6]CHAI Wei, WANG Chuanzhi, DONG Junhua, GAO Bingjun. BUCKLING ANALYSIS OF THIN-WALLED CYLINDER UNDER LOCAL RADIAL LOADS AND EXTERNAL PRESSURE[J]. MECHANICS IN ENGINEERING, 2015, 37(4): 508-512. DOI: 10.6052/1000-0879-14-282
    [7]WANG Tingwei, HUANG Lihua, LIU Ming, FU Rao. THE DETERMINATION OF BUCKLING POINT AND CRITICAL LOAD OF COMPRESSIVE MEMBER[J]. MECHANICS IN ENGINEERING, 2014, 36(3): 345-347,360. DOI: 10.6052/1000-0879-13-103
    [8]ZHAO Weidong, HUANG Yongyu, YANG Yaping. THE TRANSVERSE NONLINEAR FREE VIBRATION AND THE BUCKLING OF A COMPRESSIVE BAR ON AN ELASTIC FOUNDATION[J]. MECHANICS IN ENGINEERING, 2014, 36(3): 303-307. DOI: 10.6052/1000-0879-13-409
    [9]Liu Li-Chuan. ANALYSIS AND CALCULATION METHODS FOR BUCKLING STRENGTH OF DOME-ROOF TANK SHELLS WITH IMPERFECTIONS UNDER AXIAL COMPRESSION[J]. MECHANICS IN ENGINEERING, 2008, 30(5): 53-56. DOI: 10.6052/1000-0992-2007-470
    [10]NUMERICAL COMPUTATION FOR THE STABILITY OF THE RAYLEIGH-BENARD THERMALLY DRIVEN FLOW[J]. MECHANICS IN ENGINEERING, 2000, 22(2). DOI: 10.6052/1000-0879-f2000-037
  • Cited by

    Periodical cited type(2)

    1. 陆培锦. 例谈抽象科学概念的教学策略. 湖北教育(科学课). 2025(02): 56-58 .
    2. 张涛. 基于虚拟现实技术的小学科学项目式学习模式的构建与实施. 中国信息技术教育. 2024(23): 84-87 .

    Other cited types(2)

Catalog

    Article views (841) PDF downloads (430) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint