LIU Xiaohui, HAN Yong, CHEN Shimin, YAN Bo. NUMERICAL SIMULATION AND PARAMETER ANALYSIS OF GALLOPING OF ICED CONTINUOUS SPANS[J]. MECHANICS IN ENGINEERING, 2014, 36(1): 37-41. DOI: 10.6052/1000-0879-13-256
Citation: LIU Xiaohui, HAN Yong, CHEN Shimin, YAN Bo. NUMERICAL SIMULATION AND PARAMETER ANALYSIS OF GALLOPING OF ICED CONTINUOUS SPANS[J]. MECHANICS IN ENGINEERING, 2014, 36(1): 37-41. DOI: 10.6052/1000-0879-13-256

NUMERICAL SIMULATION AND PARAMETER ANALYSIS OF GALLOPING OF ICED CONTINUOUS SPANS

More Information
  • Received Date: June 12, 2013
  • Revised Date: December 09, 2013
  • Published Date: February 14, 2014
  • This paper studies the vibration characteristics of continuous spans with only one galloping span. The finite element model of continuous spans is set up by means of ABAQUS softwart,and the aerodynamic load is determined by the UEL. The time domain solutions for the vibrations of the continuous spans are obtained with consideration of the non-linear influence. The effects of span and galloping amplitude are investigated, which may provide some guidance for prevention of conductor galloping.
  • 1 Yoon J, Ru CQ, Mioduchowski A. Noncoaxial resonance ofan isolated multiwall carbon nanotube. Physical Review B, 2002, 66(23): 233402
    2 Natsuki T, Lei XW, Ni QQ, et al. Free vibration character-istics of double-walled carbon nanotubes embedded in anelastic medium. Physics Letters A, 2010, 374(26): 2670-2674
    3 Zhang YQ, Liu GR, Wang JS. Small-scale effects on buck-ling of multiwalled carbon nanotubes under axial compression. Physical Review B, 2004, 70(20): 205430
    4 Khosrozadeh A, Hajabasi MA. Free vibration of embeddeddouble-walled carbon nanotubes considering nonlinear in-terlayer van der Waals forces. Applied Mathematical Mod-elling, 2012, 36(3): 997-1007
    5 Majumder M, Chopra N, Andrews R, et al. Nanoscale hy-drodynamics: enhanced flow in carbon nanotubes. Nature, 2005, 438: 44-44
    6 Yoon J, Ru CQ, Mioduchowski A. Vibration and instabilityof carbon nanotubes conveying fluid. Composites Scienceand Technology, 2005, 65(9): 1326-1336
    7 Reddy CD, Lu C, Rajendran S, et al. Free vibration analy-sis of fluid-conveying single-walled carbon nanotubes. Ap-plied Physics Letters, 2007, 90(13): 133122
    8 Wang L, Ni Q, Li M. Buckling instability of double-wallcarbon nanotubes conveying fluid. Computational Materi-als Science, 2008, 44(2): 821-825
    9 Yan Y, Wang WQ, Zhang LX. Dynamical behaviors offluid-conveyed multi-walled carbon nanotubes. AppliedMathematical Modelling, 2009, 33(3): 1430-1440
    10 Yan Y, He XQ, Zhang LX, et al. Dynamic behavior oftriple-walled carbon nanotubes conveying fluid. Journal of Sound and Vibration, 2009, 319(3-5): 1003-1018
    11 Dutta SC, Roy R. A critical review on idealization andmodeling for interaction among soil-foundation-structuresystem. Computers & Structures, 2002, 80(20-21): 1579-1594
    12 Wang L. Vibration and instability analysis of tubular nano-and micro-beams conveying fluid using nonlocal elastic theory. Physica E, 2009, 41(10): 1835-1840
    13 Wang GF, Feng XQ. Effects of surface elasticity and resid-ual surface tension on the natural frequency of microbeams.Applied Physics Letters, 2007, 90(23): 231904
    14 He J, Lilley CM. Surface stress effect on bending resonanceof nanowires with different boundary conditions. Applied Physics Letters, 2008, 93(26): 263108
    15 Farshi B, Assadi A, Alinia-ziazi A. Frequency analysis ofnanotubes with consideration of surface effects. Applied Physics Letters, 2010, 96(9): 093105
  • Related Articles

    [1]ZHAO Zhi, ZHANG Pengfei, ZHANG Yuanhai. FINITE SEGMENT METHOD FOR ANALYZING SHEAR LAG EFFECT OF CONTINUOUS BOX GIRDER BRIDGE WITH VARIABLE CROSS SECTION1)[J]. MECHANICS IN ENGINEERING, 2021, 43(5): 728-733. DOI: 10.6052/1000-0879-21-098
    [2]ZHANG Renqi, HU He, ZHANG Yizhao, XING Hongchao, YUAN Ming, LIAO Hanliang, ZHU Jinfu. VIBRATION FATIGUE RESPONSE CHARACTERISTICS AND EXPERIMENTAL ANALYSIS OF A NEW TYPE OF INLINE JACKET FOR TRANSMISSION CONDUCTORS1)[J]. MECHANICS IN ENGINEERING, 2021, 43(5): 702-711. DOI: 10.6052/1000-0879-21-154
    [3]MIN Guangyun, LIU Xiaohui, CAI Mengqi, SUN Ceshi, YANG Shuguang, ZHANG Chunxia. DYNAMIC MODELING AND GALLOPING CHARACTERISTICS OF ICED CONDUCTOR WITH CONSIDERATION OF TEMPERATURE EFFECT1)[J]. MECHANICS IN ENGINEERING, 2021, 43(1): 84-93. DOI: 10.6052/1000-0879-20-319
    [4]MIN Guangyun, LIU Xiaohui, Yan Bo, SUN Ceshi, CAI Mengqi. WIND TUNNEL TEST AND STABILITY STUDY OF ICED QUAD BUNDLE CONDUCTOR1)[J]. MECHANICS IN ENGINEERING, 2020, 42(4): 447-454. DOI: 10.6052/1000-0879-20-006
    [5]CAI Mengqi, XU Qian, ZHOU Linshu, LIU Xiaohui, YAN Bo. GALLOPING BEHAVIORS OF SECTOR-SHAPE ICED EIGHT BUNDLE CONDUCTORS1)[J]. MECHANICS IN ENGINEERING, 2018, 40(6): 630-638. DOI: 10.6052/1000-0879-18-061
    [6]XIE Miaoxia, GUO Ruifeng, LI Lixia, ZHANG Linjie. THE ENERGY FINITE ELEMENT ANALYSIS FOR PREDICTION OF HIGH FREQUENCY DYNAMIC RESPONSE OF COMPOSITE MATERIAL STRUCTURES[J]. MECHANICS IN ENGINEERING, 2016, 38(4): 375-381. DOI: 10.6052/1000-0879-15-174
    [7]CHEN Denghong. APPLICATION OF A HIGH-ORDER TRANSMITTING BOUNDARY BASED ON THE SCALED BOUNDARY FINITE ELEMENT METHOD[J]. MECHANICS IN ENGINEERING, 2013, 35(3): 66-71. DOI: 10.6052/1000-0879-13-012
    [8]TAN Junqing, ZHANG Jianping. THE TECHNOLOGY OF LAYING THE ENTIRE LONG DISTANCE TRANSMISSION PIPELINE IN THE DITCH[J]. MECHANICS IN ENGINEERING, 2012, 34(5): 36-40. DOI: 10.6052/1000-0879-11-331
    [9]THE MODAL ANALYSIS FOR DYNAMIC RESPONSE OF THE TRANSMISSION WIRE OF CONTACT NET[J]. MECHANICS IN ENGINEERING, 2002, 24(1). DOI: 10.6052/1000-0992-2000-296
    [10]THE WIND VIBRATION RESPONSE OF ELECTRICAL TRANSMISSION TOWER WITH LONG SPAN[J]. MECHANICS IN ENGINEERING, 1998, 20(5): 12-13. DOI: 10.6052/1000-0992-1999-323

Catalog

    Article views (737) PDF downloads (1120) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return