## 漫谈冰球大力击射中的力学原理1)

*北京理工大学宇航学院,北京 100081

## PRINCIPLES OF MECHANICS IN SLAP SHOT IN ICE HOCKEY1)

ZHANG Kai*, WANG Jiuling*, LI Zhenzhen*, HU Jing, WANG Ning, JIN Yanfei,*,2)

*School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

China Media Group, Beijing 100020, China

 基金资助: 教育部第二批新工科研究与实践项目(E-SXWLHXLX20202602)

Abstract

Ice hockey, as the only ball team sport in the Winter Olympics, exhibits the perfect combination of skill, strength and speed, and reflects the olympic spirit of "Faster, Higher, Stronger - Together". From the perspective of mechanics, we analyze and discuss the important factors in slap shot in ice hockey, and reveal the underlying mechanics principles. By designing model experiments for slap shot in ice hockey, it is found that the angular velocity and the length of the stick have important effects on the speed of the puck. From the law of conservation of angular momentum and conservation of energy, it is found that the speed of the puck is proportional to the angular velocity before the player hits the ball, and the speed of the puck increases after hitting as the distance from the puck to the axis of rotation increases.

Keywords： ice hockey; slap shot; conservation of angular momentum; conservation of energy; angular velocity

ZHANG Kai, WANG Jiuling, LI Zhenzhen, HU Jing, WANG Ning, JIN Yanfei. PRINCIPLES OF MECHANICS IN SLAP SHOT IN ICE HOCKEY1). Mechanics in Engineering, 2022, 44(2): 454-457 DOI:10.6052/1000-0879-22-091

2022年2月4日,第二十四届冬季奥林匹克运动会在北京拉开帷幕,冬奥会作为全世界最为瞩目的冰雪赛事,受到全世界各国人民的关注。在所有冬奥会项目中,不得不提到一个运动——冰球。冰球,也被称为"冰上曲棍球",是冬奥会中唯一的集体球类项目,在1924年第一届冬季奥运会中被列为正式的比赛项目。冰球比赛中运动员穿上护具和冰刀,在光滑的冰面上高速滑行,并运用冰球杆作为工具通过推、拨、盘、带等各种动作来控制冰球。冰球队员们需要相互配合,协调作战,其目标只有一个,就是射门、进球、赢得比赛,因此快速精准的射门技术是至关重要的。大力击射是冰球比赛中常用的一种射门技术,运动员通过身体腰腹力量以及快速转体,将冰球杆举高,快速击打冰球使其具有非常高的速度,完成冰球的射门。那么,冰球大力击射背后的力学原理是什么呢?下面我们将从冰球大力击射模拟实验和理论力学的角度,揭示为什么通过大力击射可以打出具有高速运动的冰球。

## 2 冰球大力击射的力学原理

$L=p\times r$

### 图2

$L=I\omega$

### 图3

$I\omega_{1}=I\omega_{2}+mv\times r$

$\frac{1}{2}I\omega_{1}^{2}=\frac{1}{2}I\omega_{2}^{2}+\frac{1}{2}mv^{2}$

$v=\frac{2Ir}{I+mr^{2}}\omega_{1}$

## 参考文献 原文顺序 文献年度倒序 文中引用次数倒序 被引期刊影响因子

Haché A. The Physics of Hockey. Baltimore, London: The Johns Hopkins University Press, 2002

/

 〈 〉