## 新型输电导线内嵌式接续管振动疲劳响应特性及试验分析1)

*贵州电网有限责任公司电力科学研究院,贵阳550000

## VIBRATION FATIGUE RESPONSE CHARACTERISTICS AND EXPERIMENTAL ANALYSIS OF A NEW TYPE OF INLINE JACKET FOR TRANSMISSION CONDUCTORS1)

ZHANG Renqi,*,2), HU He, ZHANG Yizhao*, XING Hongchao, YUAN Ming, LIAO Hanliang, ZHU Jinfu

*Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550000, China

Northeast Electric Power University, Jilin 132000, Jilin, China

 基金资助: 1)高压输电导线内套型接续管研制资助项目(2018220202000)

Abstract

Numerical simulation and experiment have been carried out to investigate the vibration fatigue life, various crimping factors, and wind-induced fatigue for the new transmission conductor built-in connection pipe. First, a mathematical model for the fatigue response of the steel core aluminum stranded wire connection pipe under the action of wind vibration is developed. Then the model is used to numerically simulate the fatigue response of the pipe under different crimping opposite sides, which is numerically solved with COSMOL by combining the plastic flow method and the strength factor method. The research results verify the feasibility of the new transmission wire embedded splice tube. Compared with the traditional splice tube, the new transmission wire embedded splice tube can improve the stability of crimping and effectively reduce the fatigue source area of the splice tube in the breeze vibration, the dynamic bending stress formed under the action, and the fatigue damage of the wire.

Keywords： connecting pipe; fatigue; vibration; dynamic bending strain; stress

ZHANG Renqi, HU He, ZHANG Yizhao, XING Hongchao, YUAN Ming, LIAO Hanliang, ZHU Jinfu. VIBRATION FATIGUE RESPONSE CHARACTERISTICS AND EXPERIMENTAL ANALYSIS OF A NEW TYPE OF INLINE JACKET FOR TRANSMISSION CONDUCTORS1). MECHANICS IN ENGINEERING, 2021, 43(5): 702-711 DOI:10.6052/1000-0879-21-154

## 2 内嵌式钢芯铝绞线接续管振动疲劳响应数学模型

### 2.2 塑性流动法求解接续管损伤阶段疲劳响应数学模型

$D=\frac{\sigma^{b-1}{\dot{\sigma}_{\rm r} }}{B(1-D)^{b}}$

$\frac{{\rm d}D}{{\rm d}N}=2\int_{\sigma_{\min } }^{\sigma_{\max}}{{\rm d}D} =\frac{2(\sigma_{\max}^{b} -\sigma_{\min }^{b} )}{bB(1-D)^{b}}$

$N_{{\rm I}} =\frac{bB}{2(b+1)(\sigma_{\max}^{b}-\sigma_{\min }^{b} )}$

$D=1-\lt(1-\frac{N}{N_{{\rm I}} })^{1/(b+1)}$

$\frac{{\rm d}D}{{\rm d}N}=[1-(1-D)^{\beta +1}]^{\alpha (S_{M},S_{0})}\lt[\frac{S_{a} }{M(S_{0} )(1-D)}]^{\beta}$

### 2.3 强度因子法求解接续管断裂阶段疲劳寿命数学模型

$K_{\rm I} =F_{\rm s} (\lambda a_{0} )\sigma_{\rm r} \sqrt {\pi a}$

$F_{\rm s} =0.124 82 \lambda a$
$\lambda a=\left[12-\left(1-v^{2}\right)\right]^{{1}/{4}} a / \sqrt{r h}$

$\frac{{\rm d}a}{{\rm d}N}=f\left( {\sigma,a,c} \right)=f\left( {K,R}\right)$

$\frac{{\rm d}a}{{\rm d}N}=c\left[K(1-R)^{s}\right]^i,$

$\frac{{\rm d}a}{{\rm d}N}=c\lt[\eta \sqrt {\pi rh\sigma_{\rm r} }a^{{3}/{2}}(1-R)^{s}]^{i}$

$\hspace{-4mm}\int_{a_{0}}^{a_{c}} a^{3n/2} =\ \\ \hspace{-4mm} \int_0^{N_{\rm II}} c\left[ {\eta\sqrt {\pi rh} \sigma_{\rm r} a^{3/2}(1-R)^{s}}\right]^{i}{\rm d}N_{\rm II}$

$N_{\rm II} =\frac{2\lt(a_{c}^{1+3n/2} -a_{0}^{1+3n/2})}{c(2+3n)\left[ {\left[ {12(1-v^{2})}\right]^{{1}/{4}}(1-R)^{s}\sigma_{\rm r} \sqrt {\pi rh} } \right]^{i}}$

## 3 内嵌式钢芯铝绞线接续管振动疲劳响应特性仿真分析

### 3.1 建立内嵌式钢芯铝绞线接续管风振响应仿真模型

LGJ-240/30钢芯铝绞线接续管具体参数为：泊松比$\nu=0.33$,杨氏模量$E=1.46\times 10^{11}$ Pa,密度$\rho =5 000$ kg/m$^{3}$。

## 5 结论

(1) 通过对内嵌式钢芯铝绞线接续管不同张力下的风振响应仿真分析,得出导线张力从15%额定拉断力到25%额定拉断力变化时,应变有效值从$1.863\times10^{-4}$增加到$4.162\times10^{-4}$;且管体及其他段绞线要远远小于管口绞线的应力应变。

(2) 在不同压接条件下,内嵌式钢芯铝绞线接续管表现出不同的疲劳响应,在压接对边尺寸25.5 mm $\sim$ 31.16 mm区间内,应变值随着压接对边尺寸的增大呈现减小的趋势,且在30 mm时出现疲劳源区域响应谷值,在31 mm和31.16 mm时呈现增大的趋势。

(3) 随着载荷循环次数的增加,接续管管体及绞线的应变值逐渐上升,管口绞线应变由振动500万次增加到2 500万次时,有效应变值从$5.025 4\times10^{-4}$增加到$1.428 36\times10^{-3}$,接续管管体应变由振动500万次增加到2 500万次时,应变有效值从$3.053 2\times10^{-4}$增加到$6.032 8\times10^{-4}$。

(4) 内嵌式钢芯铝绞线接续管可有效降低接续管疲劳源区在微风振动作用下形成的动弯应力,降低导线的疲劳损伤。

## 参考文献 原文顺序 文献年度倒序 文中引用次数倒序 被引期刊影响因子

Zhao Long, Zhang Tian, Huang Xinbo. et al.

Research on real-time state sensing technology of smart transmission line connector

High Voltage Apparatus, 2020, 56(9):114-121, 128 (in Chinese)

[硕士论文]. 南昌: 南昌大学, 2019

Xiong Jie.

Study on fatigue life of high voltage overhead conductor with temperature variable breeze vibration

[Master Thesis]. Nanchang: Nanchang University, 2019 (in Chinese)

[硕士论文]. 郑州: 郑州大学, 2019

Xu Jiankun.

Enhanced heat transfer effect and fatigue life analysis of overhead conductor under aeolian vibration

[Master Thesis]. Zhengzhou: Zhengzhou University, 2019 (in Chinese)

[硕士论文]. 北京: 华北电力大学, 2019

Chen Xin.

Study on fatigue characteristics of overhead transmission lines in extremely cold enviroment

[Master Thesis]. Beijing: North China Electric Power University, 2019

[硕士论文]. 武汉: 华中科技大学, 2017

Li Lin.

A thesis submitted in partial fulfillment of requirements for the degree of master of engineering

[Master Thesis]. Wuhan: Huazhong University of Science and Technology, 2017

Si Weijie, Huang Xinbo, Zhao Long. et al.

Mechanism of aeolian vibration fatigue damage of transmission lines

Guangdong Electric Power, 2017, 30(4):108-114 (in Chinese)

Wang Jingchao, Xu Naiguan.

Fatigue test method of conductor under compound alternating stress

Electric Power Construction, 2001, 22(2):18-20 (in Chinese)

Li Li, Kong Deyi, Long Xiaohong, et al.

Numerical simulation of transmission line aeolian vibations by CFD

National Structural Engineering Academic Conference, Wuhan, 2008

[硕士论文]. 武汉: 华中科技大学, 2009

Kong Deyi.

A thesis submitted in partial fulfillment of the requirements for the degree of doctor of engineering

[Master Thesis]. Wuhan: Huazhong University of Science and Technology, 2009

Peng Tian, Xie Qiang, Zhang Ge. et al.

Response and vibration prevention of conductors under breeze vibration

Guangdong Electric Power, 2017, 30(8):104-108 (in Chinese)

[硕士论文]. 太原: 太原理工大学, 2018

Ren Xianda.

Effect of Annealing temperature on fatigue life and mechanical properties of wires after mountain fire

[Master Thesis]. Taiyuan: Taiyuan University of Technology, 2018 (in Chinese)

/

 〈 〉