﻿ 地铁车站增量动力分析的极限状态判定方法<sup>1)</sup>

*同济大学地下建筑与工程系,上海 200092

2) 刘彤,博士研究生,主要从事地下结构抗震性能研究. E-mail: 262liut@tongji.edu.cn; 3) 袁勇,教授,主要从事地下结构抗震和防灾减灾研究. E-mail: yuany@tongji.edu.cn

LIMIT STATE DETERMINATION FOR A SUBWAY STATION STRUCTURE BY INCREMENTAL DYNAMIC ANALYSIS1)
LIU Tong*,2), YUAN Yong*,†,3)
*Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
State Laboratory of Disaster Reduction of Civil Engineering, Tongji University, Shanghai 200092, China
Abstract

The seismic performance of the underground structures, is not well studied, while on the other hand, the seismic limit state determination is important for a performance-based design. In this paper, four limit states are defined in terms of the deformation and the waterproof performance of the structure while the maximum story drift angle (θmax) is selected as the characteristic indicator according to the feature of the subway station. Based on a multi-story subway station in Shanghai, a two-dimensional finite element model of the soil and the structure is established and the seismic limit state of the subway station is investigated using the incremental dynamic analysis (IDA). Finally, the relation curve between the seismic intensity measure PBA (peak acceleration at the base of subway station) and structural performance indictorθmax is established and the thresholds ofθmax for this subway station are obtained in the four limit states.

Key words: subway station; performance-based design; limit state; incremental dynamic analysis; performance indicator

1 算例
1.1 工程背景

 Figure Option 图1 地铁车站的横断面图(单位：mm)

1.2 有限元模型

 Figure Option 图2 有限元模型

1.3 地震波的选取

1.4 $IM$$DM$的选取

$DM$是用来表征在地震作用下结构破坏程度的参数, 包括结构构件、非结构构件和内部设施. 它的选取应根据结构的用途和其自身的 特性确定. 考虑到地铁车站结构的最大层间位移角 $θmax$能够较好反映节点转动以及结构的变形性能, 因此, 在后续增量动力分析 中将 $θmax$作为 $DM$指标.

2 增量动力分析计算结果

 Figure Option 图3 增量动力曲线

 Figure Option 图4 增量动力分位数曲线

3 极限状态的定义

3.1 极限状态定性描述

3.2 采用增量动力 曲线判定抗震极限状态

4 结 论

(1)由于受到周围土体的约束, 地铁车站结构的变形受到制约, 增量动力 曲线的变化趋势与地表结构不同. 因此, 对地铁车站抗震极限状态的判定不能直接沿用地表结构的方法.

(2)从结构的变形性能和止水性能两个方面定义了地铁车站的4个抗震极限状态. 依据增量动力 分析结果, 提出了地铁车站的抗震极限状态判定方法, 分别通过中柱柱端位移角和裂缝宽度对上述两个性能指标进行定量描述.

(3)本文提出的 $θmax$极限状态限值为该四层三跨地铁车站的抗震性能评估和设计提供有效依据.

(4)由于本文的分析中仅考虑了单一地铁车站, 因此在后续研究中还将考虑不同形式的地铁车站以得到普适性结论.

The authors have declared that no competing interests exist.

 [1] GB 50011—2010. 建筑抗震设计规范. 北京: 中国建筑工业出版, 2010 [本文引用:3] [2] FEMA-350. Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings. SAC Joint Venture for the Federal Emergency Management Agency, 2000 [本文引用:2] [3] Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514 [本文引用:4] [4] Behrouz A, Mahmood Y, Mirtaheri M, et al. Incremental dynamic analysis of high-rise towers. The Structural Design of Tall and Special Buildings, 2010, 19(8): 922-934 [本文引用:1] [5] 周颖, 吕西林, 卜一. 增量动力分析法在高层混合结构性能评估中的应用. 同济大学学报(自然科学版), 2010, 38(2): 183-187, 193 [本文引用:1] [6] FEMA-273. NEHRP Guidelines for the Seismic Rehabilitation of Buildings. The Federal Emergency Management Agency, 1997 [本文引用:2] [7] ABAQUS, Users Manual V. 6. 10-1. Dassault Systemes Simulia Corp, Providence, RI, 2010 [本文引用:1] [8] Chen ZY, Chen W, Bian GQ. Seismic performance upgrading for underground structures by introducing shear panel dampers. Advances in Structural Engineering, 2014, 17(9): 1343-1357 [本文引用:1] [9] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete. International Journal of Solids and Structures, 1989, 25(3): 299-326 [本文引用:1] [10] Lee J, Fenves GL. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, ASCE, 1998, 124(8): 892-900 [本文引用:1] [11] Menegotto M, Pinto PE. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Zurich, Switzerland , 1973 [本文引用:1] [12] Elnashai AS, Sarno LD. Fundamentals of Earthquake Engineering. West Sussex (United Kingdom): John Wiley & Sons Ltd, 2010 [本文引用:1] [13] Shome N, Cornell CA. Probabilistic seismic demand analysis of Nonlinear Structures. Report No. RMS-35, RMS Program, Stanford University, Stanford, 1999 [本文引用:1] [14] Pacific Earthquake Engineering Research Center (PEER). PEER Strong Motion Database. University of California, 2000 [本文引用:1] [15] Liu T, Chen ZY, Yuan Y, et al. Fragility analysis of a subway station structure by incremental dynamic analysis. Advances in Structural Engineering, 2016, 20(7): 1111-1124 [本文引用:1] [16] Jalayer F, Cornell CA. A technical framework for probability-based and capacity factor design (DCFD) seismic formats. Report No. 2003/08, Pacific Earthquake Engineering Research Center, College of Engineering, University of California Berkeley, 2004 [本文引用:1] [17] GB50157-2013. 地铁设计规范. 北京: 中国建筑工业出版, 2013 [本文引用:2] [18] 过镇海, 张秀琴. 混凝土受拉应力--变形全曲线的试验研究. 建筑结构学报, 1988(4): 45-53 [本文引用:1]