1 Chu HC, Chang YC, Lin Y, et al.Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications. ACS Applied Materials & Interfaces, 2016, 8(20): 13009-13017
2 Li M, Li H, Zhong W, et al.Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Applied Materials & Interfaces, 2014, 6(2): 1313-1319
3 Pegan JD, Zhang J, Chu M, et al.Skin-mountable stretch sensor for wearable health monitoring. Nanoscale, 2016, 8(39): 17295-17303
4 Park S-J, Kim J, Chu M, et al.Highly flexible wrinkled carbon nanotube thin film strain sensor to monitor human movement. Advanced Materials Technologies, 2016, 1(5): 1600053
5 Wang Y, Wang L, Yang T, et al.Wearable and highly sensitive graphene strain sensors for human motion monitoring. Advanced Functional Materials, 2014, 24(29): 4666-4670
6 Zhao S, Li J, Cao D, et al.Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS Applied Materials & Interfaces, 2017, 9(14): 12147-12164
7 Boland CS, Khan U, Backes C, et al.Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano, 2014, 8(9): 8819-8830
8 Deng H, Ji M, Yan D, et al.Towards tunable resistivity-strain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites. Journal of Materials Chemistry A, 2014, 2(26): 10048-10058
9 Duan L, Fu S, Deng H, et al.The resistivity-strain behavior of conductive polymer composites: stability and sensitivity. Journal of Materials Chemistry A, 2014, 2(40): 17085-17098
10 Yan Y, Sencadas V, Zhang J, et al.Processing, characterisation and electromechanical behaviour of elastomeric multiwall carbon nanotubes-poly (glycerol sebacate) nanocomposites for piezoresistive sensors applications. Composites Science and Technology, 2017, 142: 163-170
11 Yamada T, Hayamizu Y, Yamamoto Y, et al.A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 2011, 6(5): 296-301
12 Xu F, Wang X, Zhu Y, et al.Wavy ribbons of carbon nanotubes for stretchable conductors. Advanced Functional Materials, 2012, 22(6): 1279-1283
13 Wang Z, Huang Y, Sun J, et al.Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Applied Materials & Interfaces, 2016, 8(37): 24837-24843
14 Wang X, Sparkman J, Gou J.Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling. Composites Communications, 2017, 3: 1-6
15 Yazdani H, Hatami K, Khosravi E, et al.Strain-sensitive conductivity of carbon black-filled PVC composites subjected to cyclic loading. Carbon, 2014, 79: 393-405
16 Zhao J, Dai K, Xu X, et al.Comparative study of strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene with different tensile speeds. Polymer-Plastics Technology and Engineering, 2013, 52(13): 1303-1307
17 He H, Cheng S, Lian Y, et al.Electrical conductivity and electromagnetic interference shielding effectiveness of carbon black/sisal fiber/polyamide/polypropylene composites. Journal of Applied Polymer Science, 2015, 132(46): 42801
18 Weng W, Chen G, Wu D, et al.Fabrication and characterization of nylon 6/foliated graphite electrically conducting nanocomposite. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(15): 2844-2856
19 Liu H, Huang W, Gao J, et al.Piezoresistive behavior of porous carbon nanotube-thermoplastic polyurethane conductive nanocomposites with ultrahigh compressibility. Applied Physics Letters, 2016, 108(1): 011904
20 Liu H, Li Y, Dai K, et al.Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. Journal of Materials Chemistry C, 2016, 4(1): 157-166
21 Ding Y, Zhu J, Wang C, et al.Multifunctional three-dimensional graphene nanoribbons composite sponge. Carbon, 2016, 104: 133-140
22 Kim KK, Hong S, Cho HM, et al.Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Letters, 2015, 15(8): 5240-5247
23 Lee S, Shin S, Lee S, et al.Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Advanced Functional Materials, 2015, 25(21): 3114-3121
24 Wei Y, Chen S, Li F, et al.Highly stable and sensitive paper-based bending sensor using silver nanowires/layered double hydroxides hybrids. ACS Applied Materials & Interfaces, 2015, 7(26): 14182-14191
25 Wu X, Han Y, Zhang X, et al.Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Applied Materials & Interfaces, 2016, 8(15): 9936-9945
26 Chen S, Wei Y, Yuan X, et al.A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure. Journal of Materials Chemistry C, 2016, 4(19): 4304-4311
27 Zha J-W, Huang W, Wang S-J, et al.Difunctional graphene-Fe3O4Hybrid nanosheet/polydimethylsiloxane nanocomposites with high positive piezoresistive and superparamagnetism properties as flexible touch sensors. Advanced Materials Interfaces, 2016, 3(1): 1500418
28 Niu H, Zhou H, Wang H, et al.Polypyrrole-coated PDMS fibrous membrane: flexible strain sensor with distinctive resistance responses at different strain ranges. Macromolecular Materials and Engineering, 2016, 301(6): 707-713
29 da Costa TH, Choi J-W. A flexible two dimensional force sensor using PDMS nanocomposite. Microelectronic Engineering, 2017, 174: 64-69
30 Wang S, Zhang X, Wu X, et al.Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Soft Matter, 2016, 12(3): 845-852
31 Wu X, Lu C, Han Y, et al.Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Composites Science and Technology, 2016, 124: 44-51
32 Lin Y, Liu S, Liu L.A new approach to construct three dimensional segregated graphene structures in rubber composites for enhanced conductive, mechanical and barrier properties. Journal of Materials Chemistry C, 2016, 4(12): 2353-2358
33 Hu M, Feng J, Ng KM.Thermally conductive PP/AlN composites with a 3-D segregated structure. Composites Science and Technology, 2015, 110: 26-34
34 Kirkpatrick S.Percolation and conduction. Reviews of Modern Physics, 1973, 45(4): 574-588
35 Appel A-K, Thomann R, Mülhaupt R.Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols. Polymer, 2012, 53(22): 4931-4939
36 代坤. 导电原位微纤化聚合物复合材料填料分布控制及形态、结构和性能研究. [博士论文]. 成都:四川大学, 2010
37 Liu H, Dong M, Huang W, et al.Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. Journal of Materials Chemistry C, 2017, 5(1): 73-83
38 Lan Y, Liu H, Cao X, et al.Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene. Polymer, 2016, 97: 11-19
39 Dai K, Qu Y, Li Y, et al.Electrically conductive CB/PA6/HDPE composite with a CB particles coated electrospun PA6 fibrous network. Materials Letters, 2014, 114: 96-99
40 Li S, Li X, Chen C, et al.Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network. Composites Science and Technology, 2016, 132: 31-37
41 Zhang S, Deng H, Zhang Q, et al.Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced propertiey. ACS Applied Materials & Interfaces, 2014, 6(9): 6835-6844
42 Dai K, Xu X-B, Li Z-M.Electrically conductive carbon black (CB) filled in situ microfibrillar poly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution. Polymer, 2007, 48(3): 849-859
43 Liu H, Gao J, Huang W, et al.Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale, 2016, 8(26): 12977-12989
44 Zhao S, Zhao H, Li G, et al.Synergistic effect of carbon fibers on the conductive properties of a segregated carbon black/polypropylene composite. Materials Letters, 2014, 129: 72-75
45 Lin L, Liu S, Zhang Q, et al.Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer. ACS Applied Materials & Interfaces, 2013, 5(12): 5815-5824
46 Zheng Y, Li Y, Li Z, et al.The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors. Composites Science and Technology, 2017, 139: 64-73
47 Kang D, Pikhitsa PV, Choi YW, et al.Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature, 2014, 516(7530): 222-226
48 Yang T, Li X, Jiang X, et al.Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing. Materials Horizons, 2016, 3(3): 248-255
49 Lee P, Lee J, Lee H, et al.Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Advanced Materials, 2012, 24(25): 3326-3332
50 Zhang R, Deng H, Valenca R, et al.Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Composites Science and Technology, 2013, 74: 1-5
51 Zhang R, Deng H, Valenca R, et al.Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sensors and Actuators A: Physical, 2012, 179: 83-91
52 Yao HB, Ge J, Wang CF, et al.A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Advanced Materials, 2013, 25(46): 6692-6698
53 Gui XG, Cao A, Wei J, et al.Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano, 2010, 4(4): 2320-2326
54 Han J-W, Kim B, Li J, et al.Flexible, compressible, hydrophobic, floatable, and conductive carbon nanotube-polymer sponge. Applied Physics Letters, 2013, 102(5): 051903
55 Hu H, Zhao Z, Zhang R, et al.Polymer casting of ultralight graphene aerogels for the production of conductive nanocomposites with low filling content. Journal of Materials Chemistry A, 2014, 2(11): 3756-3760
56 Wang M, Zhang K, Dai XX, et al.Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale, 2017, 9(31): 11017-11026
57 Mu Q, Wang L, Dunn CK, et al.Digital light processing 3D printing of conductive complex structures. Additive Manufacturing, 2017, 18: 74-83
58 Mu Q, Dunn CK, Wang L, et al.Thermal cure effects on electromechanical properties of conductive wires by direct ink write for 4D printing and soft machines. Smart Materials and Structure, 2017, 26: 045008
59 Nilsson F, Krückel J, Schubert DW, et al.Simulating the effective electric conductivity of polymer composites with high aspect ratio fillers. Composites Science and Technology, 2016, 132: 16-23
60 Hu B, Hu NH, Li Y, et al.Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites. Nano Research Letters, 2012, 7: 402
61 Theodosiou TC, Saravanos DA.Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models. Composites Science and Technology, 2010, 70(9): 1312-1320
62 Wang Z, Ye X.A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle. Nanotechnology, 2013, 24(26): 265704
63 Matos MAS, Tagarielli VL, Baiz-Villafranca PM, et al.Predictions of the electro-mechanical response of conductive CNT-polymer composites. Journal of the Mechanics and Physics of Solids, 2018, 114: 84-96
64 Jin L, Chortos A, Lian F, et al.Microstructural origin of resistance-strain hysteresis in carbon nanotube thin film conductors. Processing of the National Academy of Sciences of the USA, 2018, 115(9): 1986-1991
65 Wang J, Wang W, Zhang C, et al.The electro-mechanical behavior of conductive filler reinforced polymer composite undergone large deformation: a combined numerical-analytical study. Composites Part B: Engineering, 2018, 133: 185-192 |