Mechanics in Engineering ›› 2017, Vol. 39 ›› Issue (4): 323-332.DOI: 10.6052/1000-0879-17-181
Previous Articles Next Articles
WU Jike
Received:
Online:
Published:
Abstract:
In the development of mechanics, the geometrization of theoretical systems of mechanics, is introduced. Dynaminc systems of mechanics reduced to Riemann geometry and Symplectic geometry are presented, the concepts of duel space, symmetry, transform, invariant, and there general applications in mechanics are introducd.
Key words: mechanics|geometrization|duel space|Riemann geometry|Symplectic geometry|transformation|invariant
mechanics|geometrization|duel space|Riemann geometry|Symplectic geometry|transformation|invariant
CLC Number:
O302
WU Jike. GEOMETRIZATION OF MECHAINICS[J]. Mechanics in Engineering, 2017, 39(4): 323-332.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://lxsj.cstam.org.cn/EN/10.6052/1000-0879-17-181
http://lxsj.cstam.org.cn/EN/Y2017/V39/I4/323
1 阿诺尔德. 经典力学的数学方法 (第 4 版). 齐民友译. 北京:高 等教育出版社, 2006 2 武际可. 谈谈对称. 科学网博文. http://blog.sciencenet.cn/blog-39472-781656.html 3 武际可. 从太极图说起——再谈对称. 科学网博文. http://blog.sciencenet.cn/blog-39472-786937.html 4 武际可, 黄克服. 微分几何及其在力学中的应用. 北京:北京大 学出版社, 2011 5 武际可, 王敏中, 王炜. 弹性力学引论 (修订版). 北京:北京大 学出版社, 2001 6 Olver PJ. Applications of Lie Groups to Differential Equations. New York:Springer-Verlag, 1990 7 Arnold VI, Khesin BA. Topological methods in Hydrodynamics//Applied Mathematical Sciences. New York:Springer-Verlag, 1998