Mechanics in Engineering ›› 2016, Vol. 38 ›› Issue (5): 477-492.DOI: 10.6052/1000-0879-16-243
Previous Articles Next Articles
QIU Xinming1, PAN Mingle1, YU Xiaohuan2, WANG Wei1, LIU Yuzhe1
Received:
2016-07-22
Revised:
2016-08-16
Online:
2016-10-15
Published:
2016-10-17
CLC Number:
QIU Xinming, PAN Mingle, YU Xiaohuan, WANG Wei, LIU Yuzhe. ANALYSIS OF THE ENERGY ABSORPTION PROPERTIES FOR TUBULAR STRUCTURE UNDER AXIAL COMPRESSION OF DIFFERENT FAILURE MODELS[J]. Mechanics in Engineering, 2016, 38(5): 477-492.
Add to citation manager EndNote|Ris|BibTeX
1 Mayville RA, Johnson KN, Stringfellow RG, et al. The development of a rail passenger coach car crush zone. IEEE/ASME 2003 Joint Rail Conference, American Society of Mechanical Engineers, 2003 2 Martinez E, Tyrell D, Perlman B, et al. Development of crash energy management designs for existing passenger rail vehicles. ASME 2004 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2004 3 Tyrell D, Jacobsen K, Martinez E, et al. Train-to-train impact test of crash energy management passenger rail equipment: structural results. ASME 2006 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2006 4 Airoldi A, Janszen G. A design solution for a crashworthy landing gear with a new triggering mechanism for the plastic collapse of metallic tubes. Aerospace Science and Technology, 2005, 9(5): 445-455 5 Bardi FC, Kyriakides S. Plastic buckling of circular tubes under axial compression-part I: experiments. International Journal of Mechanical Sciences, 2006, 48(8): 830-841 6 Karagiozova D, Jones N. On the mechanics of the global bending collapse of circular tubes under dynamic axial load-dynamic buckling transition. International Journal of Impact Engineering, 2008, 35(5): 397-424 7 Qiu X, He L, Gu J, et al. A three-dimensional model of circular tube under quasi-static external free inversion. International Journal of Mechanical Sciences, 2013, 75: 87-93 8 Yang J, Luo M, Hua Y, et al. Energy absorption of expansion tubes using a conical-cylindrical die: experiments and numerical simulation. International Journal of Mechanical Sciences, 2010, 52(5): 716-725 9 Rouzegar J, Karimi M. Numerical and experimental study of axial splitting of circular tubular structures. ThinWalled Structures, 2016, 105: 57-70 10 Guillow SR, Lu G, Grzebieta RH. Quasi-static axial compression of thin-walled circular aluminium tubes. International Journal of Mechanical Sciences, 2001, 43(9): 2103-2123 11 Alexander JM. An approximate analysis of the collapse of thin cylindrical shells under axial loading. Quarterly Journal of Mechanics & Applied Mathematics, 1960, 13(1): 10-15 12 Abramowicz W. The effective crushing distance in axially compressed thin-walled metal columns. International Journal of Impact Engineering, 1983, 1(3): 309-317 13 Abramowicz W, Jones N. Dynamic progressive buckling of circular and square tubes. International Journal of Impact Engineering, 1986, 4(4): 243-270 14 Grzebieta RH. An alternative method for determining the behaviour of round stocky tubes subjected to an axial crush load. Thin-Walled Structures, 1990, 9(1-4): 61-89 15 Wierzbicki T, Bhat SU, Abramowicz W, et al. Alexander revisited-a two folding elements model of progressive crushing of tubes. International Journal of Solids & Struc-tures, 1992, 29(24): 3269-3288 16 Singace AA, Elsobky H, Reddy TY. On the eccentricity factor in the progressive crushing of tubes. International Journal of Solids & Structures, 1995, 32(24): 3589-3602 17 Pugsley A. The large-scale crumpling of thin cylindrical columns. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 1-9 18 Pugsley AG. On the crumpling of thin tubular struts. The Quarterly Journal of Mechanics and Applied Mathematics, 1979, 32(1): 1-7 19 Singace AA. Axial crushing analysis of tubes deforming in the multi-lobe mode. International Journal of Mechanical Sciences, 1999, 41(41): 865-890 20 Bardi FC, Kyriakides S, Yun HD. Plastic buckling of circular tubes under axial compression-part II: analysis. International Journal of Mechanical Sciences, 2006, 48(8): 842-854 21 Wei ZG, Yu JL, Batra RC. Dynamic buckling of thin cylindrical shells under axial impact. International Journal of Impact Engineering, 2005, 32(1-4): 575-592 22 Wang A, Tian W. Twin-characteristic-parameter solution of axisymmetric dynamic plastic buckling for cylindrical shells under axial compression waves. International Journal of Solids and Structures, 2003, 40(12): 3157-3175 23 Yang Z, Yan H, Huang C, et al. Experimental and numerical study of circular, stainless thin tube energy absorber under axial impact by a control rod. Thin-Walled Structures, 2014, 82: 24-32 24 Galib DA, Limam A. Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes. Thin-Walled Structures, 2004, 42(8): 1103-1137 25 Zhang XW, Tian QD, Yu TX. Axial crushing of circular tubes with buckling initiators. Thin-Walled Structures, 2009, 47(6-7): 788-797 26 Zhang XW, Yu TX. Energy absorption of pressurized thinwalled circular tubes under axial crushing. International Journal of Mechanical Sciences, 2009, 51(5): 335-349 27 Adachi T, Tomiyama A, Araki W, et al. Energy absorption of a thin-walled cylinder with ribs subjected to axial impact. International Journal of Impact Engineering, 2008, 35(2): 65-79 28 Zhang X, Zhang H. Axial crushing of circular multi-cell columns. International Journal of Impact Engineering, 2014, 65: 110-125 29 Tabacu S. Axial crushing of circular structures with rectangular multi-cell insert. Thin-Walled Structures, 2015, 95: 297-309 30 Reid SR. Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers. International Journal of Mechanical Sciences, 1993, 35(12): 1035-1052 31 Wierzbicki T, Abramowicz W. On the crushing mechanics of thin-walled structures. Journal of Applied Mechanics, 1983, 50(4): 727-734 32 Zhao H, Abdennadher S, Othman R. An experimental study of square tube crushing under impact loading using a modified large scale SHPB. International Journal of Impact Engineering, 2006, 32(7): 1174-1189 33 Zhao H, Abdennadher S. On the strength enhancement under impact loading of square tubes made from rate insensitive metals. International Journal of Solids and Structures, 2004, 41(24-25): 6677-6697 34 Fyllingen Ø, Hopperstad OS, Langseth M. Stochastic simulations of square aluminium tubes subjected to axial loading. International Journal of Impact Engineering, 2007, 34(10): 1619-1636 35 Fyllingen Ø, Langmoen EC, Langseth M, et al. Transition from progressive buckling to global bending of square aluminium tubes. International Journal of Impact Engineering, 2012, 48: 24-32 36 Hanssen AG, Langseth M, Hopperstad OS. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler. International Journal of Impact Engineering, 2000, 24(4): 347-383 37 Shahbeyk S, Petrinic N, Vafai A. Numerical modelling of dynamically loaded metal foam-filled square columns. International Journal of Impact Engineering, 2007, 34(3): 573-586 38 Chen W, Wierzbicki T. Relative merits of single-cell, multicell and foam-filled thin-walled structures in energy absorption. Thin-Walled Structures, 2001, 39(4): 287-306 39 Zhang X, Cheng G. A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns. International Journal of Impact Engineering, 2007, 34(11): 1739-1752 40 Karagiozova D, Alves Ml. Transition from progressive buckling to global bending of circular shells under axial impact-part I: experimental and numerical observations. International Journal of Solids and Structures, 2004, 41(5-6): 1565-1580 41 Karagiozova D, Alves Ml. Transition from progressive buckling to global bending of circular shells under axial impact-part II: theoretical analysis. International Journal of Solids and Structures, 2004, 41(5-6): 1581-1604 42 Abramowicz W, Jones N. Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically. International Journal of Impact Engineering, 1997, 19(5): 415-437 43 Karagiozova D. Transition criteria between buckling modes of circular shells under axial impact. Impact Loading of Lightweight Structures, 2005, 49: 289-304 44 Elchalakani M. Plastic mechanism analyses of circular tubular members under cyclic loading. Thin-Walled Structures, 2007, 45(12): 1044-1057 45 Hsu SS, Jones N. Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes. International Journal of Crashwor-thiness, 2004, 9(2): 195-217 46 Al-Hassani S, Johnson W, Lowe W. Characteristics of inversion tubes under axial loading. Journal of Mechanical Engineering Science, 1972, 14(6): 370-381 47 Guist L, Marble DP. Prediction of the inversion load of a circular tube, 1966 48 Kinkead A. Analysis for inversion load and energy absorption of a circular tube. The Journal of Strain Analysis for Engineering Design, 1983, 18(3): 177-188 49 Calladine CR. Analysis of Large Plastic Deformations in Shell Structures. Berlin: Springer, 1986 50 Reddy T. Guist and Marble revisited-on the natural knuckle radius in tube inversion. International Journal of Mechanical Sciences, 1992, 34(10): 761-768 51 Qiu XM, He LH, Gu J, et al. An improved theoretical model of a metal tube under free external inversion. ThinWalled Structures, 2014, 80: 32-37 52 Colokoglu A, Reddy TY. Strain rate and inertial effects in free external inversion of tubes. International Journal of Crashworthiness, 1996, 1(1): 93-106 53 Yu X, Qiu X, Yu TX. Analysis of the free external inversion of circular tubes based on deformation theory. International Journal of Mechanical Sciences, 2015, 100: 262-268 54 Qiu X, Yu X, Li Y, et al. The deformation mechanism analysis of a circular tube under free inversion. Thin-Walled Structures, 2016, 107: 49-56 55 Sekhon G, Gupta N, Gupta P. An analysis of external inversion of round tubes. Journal of Materials Processing Technology, 2003, 133(3): 243-256 56 Rosa P, Baptista R, Rodrigues J, et al. An investigation on the external inversion of thin-walled tubes using a die. International Journal of Plasticity, 2004, 20(10): 1931-1946 57 Sun ZC, Yang H. Failure mechanism and forming limit of tube axial compressive process. Transactions of Nonferrous Metals Society of China, 2006, 16(s1): 785-790 58 Yang H, Sun ZC, Jin YJ. FEM analysis of mechanism of free deformation under dieless constraint in axial compressive forming process of tube. Journal of Materials Processing Technology, 2001, 115(3): 367-372 59 Niknejad A, Moeinifard M. Theoretical and experimental studies of the external inversion process in the circular metal tubes. Materials & Design, 2012, 40: 324-330 60 Leu DK. The curling characteristics of static inside-out inversion of metal tubes. International Journal of Machine Tools and Manufacture, 2000, 40(1): 65-80 61 Miscow FPC, Al-Qureshi HA. Mechanics of static and dynamic inversion processes. International Journal of Mechanical Sciences, 1997, 39(2): 147-161 62 Yu X, Qiu X, Yu TX. Theoretical model of a metal tube under inversion over circular dies. International Journal of Mechanical Sciences, 2016, 108-109: 23-28 63 Reid S, Harrigan J. Transient effects in the quasi-static and dynamic internal inversion and nosing of metal tubes. International journal of Mechanical Sciences, 1998, 40(2): 263-280 64 Harrigan J, Reid S, Peng C. Inertia effects in impact energy absorbing materials and structures. International Journal of Impact Engineering, 1999, 22(9): 955-979 65 Almeida BPP, Alves ML, Rosa PAR, et al. Expansion and reduction of thin-walled tubes using a die: experimental and theoretical investigation. International Journal of Machine Tools and Manufacture, 2006, 46(12-13): 1643-1652 66 Daxner T, Rammerstorfer FG, Fischer FD. Instability phenomena during the conical expansion of circular cylindrical shells. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21-24): 2591-2603 67 Shakeri M, Salehghaffari S, Mirzaeifar R. Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation. International Journal of Crashworthiness, 2007, 12(5): 493-501 68 Seibi AC, Barsoum I, Molki A. Experimental and numerical study of expanded aluminum and steel tubes. Procedia Engineering, 2011, 10: 3049-3055 69 Al-Abri OS, Pervez T. Structural behavior of solid expandable tubular undergoes radial expansion process-analytical, numerical, and experimental approaches. International Journal of Solids and Structures, 2013, 50(19): 2980-2994 70 Lu Y-H. Study of tube flaring ratio and strain rate in the tube flaring process. Finite Elements in Analysis and Design, 2004, 40(3): 305-318 71 Fischer FD, Rammerstorfer FG, Daxner T. Flaring-an analytical approach. International Journal of Mechanical Sciences, 2006, 48(11): 1246-1255 72 Seibi AC, Al-Hiddabi S, Pervez T. Structural behavior of a solid tubular under large radial plastic expansion. Journal of Energy Resources Technology, 2005, 127(4): 323 73 Karrech A, Seibi A. Analytical model for the expansion of tubes under tension. Journal of Materials Processing Technology, 2010, 210(2): 356-362 74 Yan J, Yao S, Xu P, et al. Theoretical prediction and numerical studies of expanding circular tubes as energy absorbers. International Journal of Mechanical Sciences, 2016, 105: 206-214 75 Liu Y, Qiu X. A theoretical study of the expansion metal tubes. International Journal of Mechanical Sciences, 2016, 114: 157-165 76 Huang X, Lu G, Yu TX. On the axial splitting and curling of circular metal tubes. International Journal of Mechanical Sciences, 2002, 44(11): 2369-2391 77 Stronge WJ, Yu TX, Johnson W. Long stroke energy dissipation in splitting tubes. International Journal of Mechanical Sciences, 1983, 25(9-10): 637-647 78 Huang X, Lu G, Yu TX. Energy absorption in splitting square metal tubes. Thin-Walled Structures, 2002, 40(40): 153-165 79 Reddy TY, Reid SR. Axial splitting of circular metal tubes. International Journal of Mechanical Sciences, 1986, 28(2):111-131 80 Atkins AG. On the number of cracks in the axial splitting of ductile metal tubes. International Journal of Mechanical Sciences, 1987, 29(2): 115-121 81 Niknejad A, Rezaei B, Liaghat GH. Empty circular metal tubes in the splitting process-theoretical and experimental studies. Thin-Walled Structures, 2013, 72: 48-60 82 Jin SY, Altenhof W. An analytical model on the steadystate deformation of circular tubes under an axial cutting deformation mode. International Journal of Solids and Structures, 2011, 48(2): 269-279 83 Chung Kim Yuen S, Altenhof W, Opperman CJ, et al. Axial splitting of circular tubes by means of blast load. International Journal of Impact Engineering, 2013, 53: 17-28 84 Tanaskovic J, Milkovic D, Lucanin V, et al. Experimental investigations of the shrinking-splitting tube collision energy absorber. Thin-Walled Structures, 2015,86:142-147 85 Li J, Gao G, Dong H, et al. Study on the energy absorption of the expanding-splitting circular tube by experimental investigations and numerical simulations. Thin-Walled Structures, 2016, 103: 105-114 86 Moreno C, Williams T, Beaumont R, et al. Testing, simulation and evaluation of a novel hybrid energy absorber. International Journal of Impact Engineering, 2016, 93: 11-27 87 Gui LJ, Zhang P, Fan ZJ. Energy absorption properties of braided glass/epoxy tubes subjected to quasi-static axial crushing. International Journal of Crashworthiness, 2009, 14(1): 17-23 88 McGregor CJ, Vaziri R, Poursartip A, et al. Simulation of progressive damage development in braided composite tubes under axial compression. Composites Part A: Applied Science and Manufacturing, 2007, 38(11): 2247-2259 89 Warrior NA, Turner TA, Cooper E, et al. Effects of boundary conditions on the energy absorption of thin-walled polymer composite tubes under axial crushing. Thin-Walled Structures, 2008, 46(7-9): 905-913 90 Abdel-Haq M, Broggiato G, Newaz G. Constraint effects on energy absorption in unidirectional PMC tubes. Journal of Composite Materials, 1999, 33(9): 774-793 91 Huang JC, Wang XW. Effect of the SMA trigger on the energy absorption characteristics of CFRP circular tubes. Journal of Composite Materials, 2009, 44(5): 639-651 92 Assaee H, Rouzegar J, Saeedi Fakher MS, et al. Axial splitting of composite columns with different cross sections. Thin-Walled Structures, 2016, 99: 109-118 93 Palanivelu S, Paepegem WV, Degrieck J, et al. Crushing and energy absorption performance of different geometrical shapes of small-scale glass/polyester composite tubes under quasi-static loading conditions. Composite Structures, 2011, 93(2): 992-1007 94 Rezaei B, Niknejad A, Assaee H, et al. Axial splitting of empty and foam-filled circular composite tubes-an experimental study. Archives of Civil and Mechanical Engineering, 2015, 15(3): 650-662 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||