1 Helder JA. Sloshing Sloshsat FLEVO: numerical simulation of coupled solid-liquid dynamics in micro-gravity. [Master Thesis]. Groningen: University of Groningen, 2005
2 Abramson HN. The dynamic behavior of liquids in moving containers. NASA SP-106, Southwest Research Institute, 1966
3 Vergalla M, Garry LII, Kirk D, et al. Experimental and numerical investigation of reduced gravity fluid slosh dynamics. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Seattle, Washington, 2008
4 王照林, 刘延柱. 充液系统动力学. 北京: 科学出版社, 2002
5 李青, 王天舒, 马兴瑞. 充液航天器液体晃动和液固耦合动力学 的研究与应用. 力学进展, 2012, 42(4): 472-481
6 王为. 考虑毛细效应的液体小幅晃动问题研究. [博士论文]. 北 京: 清华大学, 2008
7 李青. 充液挠性系统动力学分析及在航天工程中的应用研究. [博 士论文]. 北京: 清华大学, 2010
8 程绪铎. 微重时矩形容器内静液面形状研究. 水动力学研究与进 展, 2003, 18(1): 38-41
9 El-Kamali M, Schotté JS, Ohayon R. Three-dimensional modal analysis of sloshing under surface tension. International Journal for Numerical Methods in Fluids, 2001, 65(1-3): 87-105
10 王照林, 邓重平. 失重时球腔内液体晃动特性的研究. 空间科学 学报, 1985, 5(4): 294-302
11 王照林, 邓重平. 失重时方形容器内液体的自由晃动问题. 清华 大学学报(自然科学版), 1986, 28(3): 1-9
12 Utsumi M. Low-gravity sloshing in an axisymmetrical container excited in the axial direction. Journal of Applied Mechanics, 2000, 67(2): 344-354
13 Utsumi M. Low-gravity slosh analysis for cylindrical tanks with hemiellipsoidal top and bottom. Journal of Spacecraft and Rockets, 2008, 45(4): 813-821
14 Moiseev NN. On the theory of nonlinear vibrations of a liquid of finite volume. Journal of Applied Mathematics and Mechanics, 1958, 22(5): 860-872
15 Perko LM. Large-amplitude motions of a liquid-vapour interface in an accelerating container. Journal of Fluid Mechanics, 1969, 35(1): 77-96
16 Miles JW. Resonantly forced surface waves in a circular cylinder. Journal of Fluid Mechanics, 1984, 149: 15-31
17 Faltinsen OM, Rognebakke OF, Lukovsky IA, et al. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. Journal of Fluid Mechanics, 2000, 407: 201-234
18 余延生, 马兴瑞, 王本利. 圆柱贮箱液体非线性晃动的多维模态 分析方法. 应用数学和力学, 2007, 28(8): 901-911
19 Van SMC, Peterson LD, Crawley EF. The coupled nonlinear dynamic characteristics of contained fluids in zero gravity. 31st AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Long Beach, USA, 1990
20 Peterson LD, Crawley EF, Hansman RJ. Nonlinear fluid slosh coupled to the dynamics of a spacecraft. AIAA Journal, 1989, 27(9): 1230-1240
21 Van SMC, Crawley EF. Nonlinear forced-response characteristics of contained fluids in microgravity. Journal of Spacecraft and Rockets, 1995, 32(3): 521-532
22 杨旦旦, 岳宝增. 微重力下圆柱形贮箱内液体晃动的分岔现象. 力学与实践, 2013, 35(2): 29-34
23 He YJ, Ma XR, Wang PP, et al. Low-gravity liquid nonlinear sloshing analysis in a tank under pitching excitation. Journal of Sound and Vibration, 2007, 299(1): 164-177
24 Yue BZ. Nonlinear coupled dynamics of liquid-filled spherical container in microgravity. Applied Mathematics and Mechanics, 2008, 29: 1085-1092
25 陈科. 充液航天器刚-液耦合动力学研究. [硕士论文]. 北京: 清 华大学, 2004
26 吕敬. 充液挠性航天器非线性动力学研究. [博士论文]. 北京: 清华大学, 2006
27 Aslam M. Finite element analysis of earthquake induced sloshing in axisymmetric tanks. International Journal for Numerical Methods in Engineering, 1981, 17(2): 159-170
28 Fisher MF, Schmidt GR, Martin JJ. Analysis of cryogenic propellant behavior in microgravity and low thrust environments. Cryogenics, 1992, 32(2): 230-235
29 Koh HM, Kim JK, Park JH. Fluid-structure interaction analysis of 3-D rectangular tanks by a variationally coupled BEM-FEM and comparison with test results. Earthquake Engineering & Structural Dynamics, 1998, 27(2): 109-124
30 Dutta S, Laha MK. Analysis of the small amplitude sloshing of a liquid in a rigid container of arbitrary shape using a low-order boundary element method. International Journal for Numerical Methods in Engineering, 2000, 47(9): 1633-1648
31 包光伟, 王政伟. 液体三维晃动特征值问题的有限元数值计算方 法. 力学季刊, 2003, 24(2): 185-190
32 Wang W, Li JF, Wang TS. Damping computation of liquid sloshing with small amplitude in rigid container using FEM. Acta Mechanica Sinica, 2006, 22(1): 93-98
33 Li Q, Ma XR, Wang TS. Equivalent mechanical model for liquid sloshing during draining. Acta Astronautica, 2011, 68(1): 91-100
34 Miao N, Li JF, Wang TS, et al. Investigation on free sloshing of liquid in two-dimensional rectangular tanks in microgravity. 64th International Astronautical Congress, Beijing, China, 2013
35 岳宝增, 于丹. 微重环境下Cassini 贮液腔中液体晃动特性研 究. 动力学与控制学报, 2012, 10(1): 76-80
36 Amsden AA, Harlow FH. A simplified MAC technique for incompressible fluid flow calculations. Journal of Computational Physics, 1970, 6(2): 322-325
37 Hirt CW, Amsden AA, Cook JK. An arbitrary LagrangianEulerian computing method for all flow speeds. Journal of Computational Physics, 1997, 135(2): 203-216
38 Himeno T, Watanabe T, Konno A. Numerical analysis for propellant management in rocket tanks. Journal of Propulsion and Power, 2005, 21(1): 76-86
39 Hirt CW, Nichols BD. Volume of fluid(VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39(1): 201-225
40 Marsell B, Griffin D, Schallhorn P, et al. Integrated CFD and controls analysis interface for high accuracy liquid propellant slosh prediction. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, USA, 2012
41 岳宝增, 李俊峰. 三维液体非线性晃动及其复杂现象. 力学学报, 2002, 34(6): 949-955
42 Yue BZ, Wang ZL. Nonlinear phenomena of threedimensional liquid sloshing in microgravity environment. Chinese Science Bulletin, 2006, 51(20): 2425-2431
43 周宏, 李俊峰, 王天舒. 低重环境航天器贮箱内三维液体晃动数 值模拟. 清华大学学报: 自然科学版, 2005, 45(5): 658-661
44 Veldman AEP. The simulation of violent free-surface dynamics at sea and in space. European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, 2006
45 Baeten A. Liquid sloshing simulation using a threedimensional particle-cluster approach. [PhD Thesis]. Germany: Aachen Technical University, 2007
46 Kezirian MT. Fuel slosh dynamics in spinning spacecraft. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, 2006
47 Vreeburg JPB. Liquid dynamics from spacelab to sloshsat. Microgravity Science and Technology, 2009, 21(1-2): 11-20
48 Dodge FT, Garza LR. Experimental and theoretical studies of liquid sloshing at simulated low gravity. Journal of Applied Mechanics, 1967, 34(3): 555-562
49 Burke CA. Nutation in the spinning SPHERES spacecraft and fluid slosh. [Master Thesis]. Cambridge: Massachusetts Institute of Technology, 2010
50 Berry RL, Tegart JR. Experiment study of transient liquid motion in orbiting spacecraft. NAS8-30690, 1975
51 黄怀德. 低重力环境下的液体晃动研究. 宇航学报, 1980, 1: 71-84
52 Chintalapati S, Holicker CA, Schulman RE, et al. Design of an experimental platform for acquisition of liquid slosh data aboard the international space station. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, USA, 2012
53 Schallhorn P, Roth J, Marsell B, et al. Acquisition of long-duration, low-gravity slosh data utilizing existing ISS equipment (SPHERES) for calibration of CFD models of coupled fluid-vehicle behavior. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, USA, 2012
54 Silvernail NL, Sances DJ, Gangadharan S. Modeling of fuel slosh in a spin stabilized spacecraft with on-axis propellant tanks implemented with diaphragms. AIAA Modeling and Simulation Technologies Conference, Chicago, USA, 2009
55 Fuhrmann E, Dreyer M. Description of the sounding rocket experiment-SOURCE. Microgravity Science and Technology, 2008, 20(3-4): 205-212
56 Prins JJM. Sloshsat FLEVO facility for liquid experimentation and verification in orbit: description of the mini satellite. NLR-TP-2000-63, 2000
57 Naumann RJ, Lundquist CA, Tandberg-Hanssen E, et al. Spacelab science results study. NASA/CR-2009-215740, 2009
58 Allen JS, Saavedra S. NASA sponsored fluid physics experiments conducted on the Mir Space Station. 37th Aerospace Sciences Meeting and Exhibit, Reno, USA, 1999
59 Weislogel MM, Jenson R, Chen Y, et al. The capillary flow experiments aboard the International Space Station: status. Acta Astronautica, 2009, 65: 861-869
60 Deffenbaugh DM, Dodge FT, Green ST. Final report for the liquid motion in a rotating tank experiment (LME). NASA/CR-1998-208667, 1998
61 Snyder HA. Sloshing in microgravity. Cryogenics, 1999, 39(12): 1047-1055
62 Vergalla M. Investigation of slosh events using existing SPHERES hardware on ISS platform. 61st International Astronautical Congress, Prague, Czech Republic, 2010
63 Otero AS, Miller DW. Initial SPHERES operations aboard the International Space Station.//Rainer S, Hans, PR, Arnoldo V, et al, eds. Small Satellites for Earth Observation. Dordrecht: Springer Netherlands, 2008. 267-276
64 Bayle O, L'Hullier V, Ganet M, et al. Influence of the ATV propellant sloshing on the GNC performance. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 2002
65 王天舒, 苗楠, 李俊峰. 航天器交会对接中液体燃料晃动等效模 型研究. 空间控制技术与应用, 2015, 41(3): 1-7
66 张雄, 刘岩, 马上. 无网格法的理论及应用. 力学进展, 2009, 39(1): 1-36
67 Souto-Iglesias A, Delorme L, Pérez-Rojas L, et al. Liquid moment amplitude assessment in sloshing type problems with smooth particle hydrodynamics. Ocean Engineering, 2006, 33(11): 1462-1484
68 Gómez-Gesteira M, Dalrymple RA. Using a threedimensional smoothed particle hydrodynamics method for wave impact on a tall structure. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2004, 130(2): 63-69
69 Lo EYM, Shao S. Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Applied Ocean Research, 2002, 24(5): 275-286
70 Tartakovsky AM, Meakin P. Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Advances in Water Resources, 2006, 29(10): 1464-1478 |