力学与实践 ›› 2014, Vol. 36 ›› Issue (2): 216-218,221.DOI: 10.6052/1000-0879-12-437

• 应用研究 • 上一篇    下一篇

圣维南原理的应用及屈服面的形状和大小的简便确定

王启智, 杨井瑞, 张财贵, 周妍   

  1. 四川大学土木工程及应用力学系, 成都610065
  • 收稿日期:2012-11-27 修回日期:2013-03-12 出版日期:2014-04-08 发布日期:2014-04-15
  • 通讯作者: 王启智,教授,博士生导师,主要研究方向为材料和结构的损伤、断裂、结构可靠性和失效分析. E-mail:qzwang2004@163.com

APPLICATION OF SAINT-VENANT’S PRINCIPLE AND DETERMINATION OF SHAPE AND SIZE OF YIELDING SURFACES

WANG Qizhi, YANG Jingrui, ZHANG Caigui, ZHOU Yan   

  1. Department of Civil Engineering and Applied Mechanics, Sichuan University, Chengdu 610065, China
  • Received:2012-11-27 Revised:2013-03-12 Online:2014-04-08 Published:2014-04-15

摘要:

在第1 部分,讨论弹性力学的圣维南原理在线弹性断裂力学中的应用,举例说明它的误用会引起很大的误差. 在第2 部分,讨论塑性力学中的Tresca 屈服面和Mises 屈服面的形状和大小,并推广到对Mohr-Coulomb 屈服面和Drucker-Prager 屈服面的描述,给出主应力空间中Mises 屈服面和Tresca 屈服面的形状和大小的三维图象,并以此更正和补充现有的弹塑性力学教材.

关键词:

圣维南原理|屈服面的形状和大小

Abstract:

In the first part of paper, we discuss the application of the Saint-Venant's principle of the elasticity to fracture mechanics, pointing out that misusing of the principle may cause extremely large error by using sone examples. In the second part, we discuss methods for determining the shape and size of Tresca and Mises yielding surfaces and make an extension to the description of Mohr-Coulomb and Drucker-Prager yielding surfaces. We present a three-dimensional image showing the shape and size of Tresca and Mises yielding surfaces in the principal stress space to correct the errors in existing textbooks and monographs on elasto-plasticity.

Key words:

Saint-Venant&rsquo, s principle|shape and size of yielding surfaces

中图分类号: