1 Clough RW. Dynamics of Structure. New York: McGrawHill Book Co., 1975
2 Newmark NM. A method of computation for structural dynamics. ASCE J of Engineering Mechanics Division, 1959,85(3): 67-94
3 Bathe KJ, Wilson EL. Numerical Methods in Finite Element Analysis. New Jersey: Prentice-Hall, Inc.,1976
4 Mather NB, Marmo OA. On enhancement of accuracy in direct integration dynamic response problems. Earthquake Engineering and Structural Dynamics, 1991, 20(7): 699-703
5 Gurtin ME. Variational principles for linear elastodynamics. Avchive for Rational Mechanics and Analysis, 1964,16(1): 34-50
6 罗恩. 关于线弹性动力学中各种Gurtin 型变分原理. 中国 科学,A 辑,1987, 9: 936-948 (Luo En. On the Gurtin variational principles for linear elastodynamic. Science in China,Series A,1987, 9: 936-948 (in Chinese))
7 刘铁林, 陈海滨. 一种基于Gurtin 变分原理的非时间步参数逐 步积分法. 沈阳建筑大学学报,2006,26(1): 11-14 (Liu Tielin, Chen Haibin. Step-by-step integration method of nontime-step parameter based on Gurtin variational principle. Journal of Shenyang Jianzhu University, 2006, 26(1): 11-14 (in Chinese))
8 宋立娜, 李勇军. 一种基于位移型Gurtin 变分原理的逐步积 分法. 辽宁工学院学报, 2006,26(1): 56-59 (Song Lina, Li Yongjun. Step-by-step integration method based on Gurtin variational principle of displacement model. Journal of Liaoning Institute of Technology, 2006, 26(1): 56-59 (in Chinese))
9 彭建设, 杨杰, 袁玉全等. 矩形薄板瞬态响应的卷积型DQ 半解析法. 应用数学和力学,2009, 30(9):1065-1077 (Peng Jianshe, Yang Jie, Yuan Yuquan. Convolution-type semianalytic DQ approach for transient response of rectangular plates. Applied Mathematics and Mechanics, 2009, 30(9):1065-1077 (in Chinese))
10 毕继红, 郭淑卿. 应用Gurtin 变分原理求解板动力问题的样条 有限元法. 天津城市建设学院学报,2000, 6(2):84-88 (Bi Jihong, Guo Shuqing. A spline ˉnite elenent methods for initial value problems of elastradynamics of plate with Gurtin variational principle. Journal of Tianjin Institute of Urban Construction, 2000, 6(2):84-88 (in Chinese))
11 徐次达, 陈学潮, 郑瑞芬. 新计算力学加权残值|| 原理、方 法及应用. 上海: 同济大学出版社,1997
12 李永莉, 赵志岗. 用卷积型加权残值法求解梁的动力学问题. 力 学与实践,2002, 24(2):47-49 (Li Yongli,Zhao Zhigang. The calculation for the dynamic problem of a beam by method of convolution-type weighed residuals. Mechanics in Engineering, 2002, 24(2):47-49 (in Chinese))
13 李永莉, 赵志岗, 侯志奎. 卷积型加权残值法求解薄壳的动力 学问题. 力学与实践,2006, 28(3):71-73 (Li Yongli, Zhao Zhigang, Hou Zhikui. The thin shell solved by method of convolution-type weighted residuals. Mechanics in Engineering, 2006, 28(3):71-73 (in Chinese))
14 李永莉, 赵志岗, 侯志奎. 卷积型加权残值法求解薄板的动力学 问题. 工程力学,2006, 23(1):43-46 (Li Yongli, Zhao Zhigang, Hou Zhikui. Dynamic analysis of thin plates by convolution-type weighted residuals method. Engineering Mechanics, 2006, 23(1):43-46 (in Chinese))
15 李永莉, 赵志岗, 侯志奎. 卷积型伽辽金法求解任意边界梁的动 力学问题. 力学与实践,2008, 30(6):28-30 (Li Yongli, Zhao Zhigang, Hou Zhikui. The calculation of the dymamic problem of a beam with arbitrary boundary conditions by method of convolution-type Galerkin method. Mechanics in Engineering, 2008, 30(6):28-30 (in Chinese)) |