全部

力学与实践 ›› 2009, Vol. 31 ›› Issue (2): 82-83.doi: 10.6052/1000-0992-2007-030

• 教育研究 • 上一篇    下一篇

用图乘法和重积分法求纯弯曲梁挠曲线问题的讨论

游猛   

  1. 南华大学城市建设学院
  • 收稿日期:2007-01-23 修回日期:2007-09-26 出版日期:2009-04-08 发布日期:2009-04-08

Discussion of Serval Issues for Pure Beam Deflection Curve by Metheds of Graph Multiplication and Double Integral

  • Received:2007-01-23 Revised:2007-09-26 Online:2009-04-08 Published:2009-04-08

摘要: 等截面直梁受纯弯曲作用,其挠曲线精确解为圆弧线,然而用图乘法和重积分法求得的却都 是抛物线. 分析了用图乘法和重积分法求解纯弯曲梁的挠曲线均是抛物线而不是圆弧线的原 因,给出了用抛物线代替圆弧线的误差.

关键词: 图乘法, 重积分法, 纯弯曲梁, 挠曲线

Abstract: The accuracy key to the deflection curve of a uniform section straight beam subjected to the moment is a circle,however,the answers are both parabolas by metheds of graph multiplication and double integral .The reasons are analysed,and the error is given with a parabola replacing a circle.

Key words: metheds of graph multiplication, metheds of double integral, pure beam, deflection curve