力学与实践 ›› 2005, Vol. 27 ›› Issue (5): 0-0.DOI: 10.6052/1000-0992-2004-450

• 应用研究 •    

GMRES方法在含动边界流场中的应用

任登凤 谭俊杰 张军   

  1. 南京理工大学动力工程学院,南京 南京理工大学动力工程学院 南京 210094 南京理工大学动力工程学院
  • 收稿日期:2004-11-30 修回日期:2005-03-22 出版日期:2005-10-10 发布日期:2005-10-10

APPLICATION OF GMRES METHOD IN FLOW FIELDS INVOLVING MOVING BOUNDARIES

  • Received:2004-11-30 Revised:2005-03-22 Online:2005-10-10 Published:2005-10-10

摘要: 以基于格心的有限体积法为基础,空间二阶精度,采用4阶Runge-Kutta, GMRES隐式 方法求解基于ALE形式的Euler方程,网格单元边界处守恒量通量的计算采用了Hanel方法, 对NACA0012翼型绕流及运动圆球绕流等问题进行数值模拟,取得了较好的结果. GMRES方 法克服了以往隐式方法大量耗费内存的弱点,达到了计算耗时短和占用内存少的统一.

关键词: 非结构网格,动网格, Runge-Kutta方法,, GMRES方法

Abstract: Runge-Kutta and GMRES methods are used for solving the 3-D time-dependent Euler equations in an Arbitrary Lagrangian-Eulerian(ALE) framework. The algorithm is based on a cell centered, finite-volume approach, second-order accurate in space. Hanel method is used to calculate the flux of the control face. Flows around a pitching NACA0012 airfoil and a moving ball are simulated. The numerical results are satisfactory. GMRES has the advantages of taking much less memory and less computation time.

Key words: unstructured meshes, moving meshes, Runge-Kutta method, GMRES