全部

力学与实践 ›› 2004, Vol. 26 ›› Issue (2): 0-0.doi: 10.6052/1000-0992-2002-390

• 专题综述 •    

不同模量弹性问题理论及有限元法研究进展

叶志明 陈彤 姚文娟   

  1. 上海大学土木工程系,上海,200072 上海大学土木工程系 200072 上海大学土木工程系 200072
  • 收稿日期:2002-11-08 修回日期:1900-01-01 出版日期:2004-04-10 发布日期:2004-04-10

PROGRESSES IN ELASTICITY THEORY WITH DIFFERENT MODULI IN TENSION AND COMPRESSION AND RELATED FEM

  • Received:2002-11-08 Revised:1900-01-01 Online:2004-04-10 Published:2004-04-10

摘要: 随着科学技术的日益发展,对材料力学性质的研究提出了更高的要求,研制新型的材料以 及挖掘材料自身特性的潜力,已成为新的研究动向. 简述了不同模量弹性问题理论及其 有限元法的研究与发展. 利用等效的概念,对Ambartsumyan有限元计算模型、 Jones有限元计算模型、张允真等有限元计算模型、叶志明等计算模型进行改进和探讨. 通 过不同模量弹性理论及其有限元方法在实际工程构件问题分析中的应用表明,若沿用相同模 量弹性理论或有限元对有关问题进行计算,其结果将与采用不同模量模型材料所得的刚度和 强度有较大的偏差.

关键词: 不同模量, 弹性理论, 有限元法

Abstract: With the development of science and technology, one has to develop new materials and to explore potential of material properties. This paper presents the development of the elasticity theory with different Young's modulus in tension and compression. There are fundamental problems for the finite element method (FEM) and engineering applications. In this paper, Ambartsumyan FEM computational model, Jones' FEM computational model, Zhang's FEM computational model, and Ye's FEM computational model are improved and discussed by an equivalent concept. We find that the error of numerical results is apparent in the stiffness and strength of the materials for engineering structures if uniform Young's modulus is used.

Key words: different Young's moduli in tension and compression,