力学与实践 ›› 2022, Vol. 44 ›› Issue (4): 969-973.DOI: 10.6052/1000-0879-21-553

• 教育研究 • 上一篇    下一篇

Matlab求解库埃特流在计算流体力学课程中的应用

刘益, 付小莉()   

  1. 同济大学土木工程学院,上海 200092
  • 收稿日期:2021-12-16 出版日期:2022-08-08 发布日期:2022-08-17
  • 作者简介:付小莉,副教授,研究方向为水力学及流体力学。E-mail: xlfu@tongji.edu.cn
  • 基金资助:
    国家自然科学基金(51879191)和同济大学2021—2022年度课程思政教改课题(KCSZ-B-20210209)资助项目。

APPLICATION OF MATLAB TO SOLVE COUETTE FLOW IN COMPUTATIONAL FLUID MECHANICS COURSE

LIU Yi, FU Xiaoli()   

  1. School of Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2021-12-16 Online:2022-08-08 Published:2022-08-17

摘要:

计算流体力学主要研究如何通过数值方法来求解流体力学的控制方程。本文以不可压缩库埃特流为例,在有理论解析解的基础上建立显式、隐式方法的有限差分法控制方程,并提出了基于压力修正法的第三种方法,采用Matlab编程求解流场分布,并研究推进步数、等分数、时间间隔与雷诺数对计算误差的影响。通过对经典流动现象力学特性的学习,可加深学生对计算流体力学求解基本方法和思路的理解,培养理论联系实践的能力。

关键词: 计算流体力学, 库埃特流, 教学改革

Abstract:

Computational fluid mechanics mainly studies how to solve the governing equations of fluid mechanics through numerical methods. In this paper, taking the incompressible Couette flow as an example, based on the theoretical analytical solution, the finite difference control equations of explicit method and implicit method are established, and the third method based on pressure correction method is proposed. The flow field distribution is solved by Matlab programming, and the effects of propulsion steps, equal fraction, time interval, and Reynolds number on the calculation error are studied. By studying the mechanical characteristics of classical flow phenomena, students can deepen their understanding of the basic methods and ideas of computational fluid mechanics, and cultivate the ability to integrate theory with practice.

Key words: computational fluid mechanics, Couette flow, educational reform

中图分类号: