力学与实践 ›› 2012, Vol. 34 ›› Issue (1): 48-51.DOI: 10.6052/1000-0879-20120108

• 应用研究 • 上一篇    下一篇

细长柔韧压杆弹性失稳后挠曲线形状的计算机仿真

潘文波1, 李银山1, 李彤2, 李欣业1   

  1. 1. 河北工业大学 力学系, 天津 300130;
    2. 华东理工大学 机械与动力工程学院, 上海 200237
  • 收稿日期:2011-03-28 修回日期:2011-06-15 出版日期:2012-02-15 发布日期:2012-02-20
  • 作者简介:李银山, 1961年生, 男, 博士, 教授, 研究方向为非线性动力学振动、控制和 优化设计.E-mail: yinshanli@126.com
  • 基金资助:

    国家自然科学基金项目资助(10872063).

COMPUTER SIMULATION OF DEFLECTION CURVE SHAPE FOR THE SLENDER, FLEXIBLE, COMPRESSED BAR AFTER BUCKLING

PAN Wenbo1, LI Yinshan1, LI Tong2, LI Xinye1   

  1. 1. Department of Mechanics, Hebei University of Technology, Tianjin 300130, China;
    2. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2011-03-28 Revised:2011-06-15 Online:2012-02-15 Published:2012-02-20

摘要: 采用Maple编程对细长柔韧压杆弹性失稳后挠曲线形状进行了计算机仿真,进行了细长柔韧压杆弹性失稳后最大挠度和挠曲线封闭两种情况下的挠曲线形状仿真和详细的解答.分析计算了失稳后屈曲的力学特征,给出了解析表达式;分析计算了失稳后屈曲的平衡状态曲线的几何特征,绘出了计算机仿真曲线.结果表明:失稳后最大挠度和挠曲线封闭是属于两个完全不同的屈曲状态.

关键词:

细长柔性杆|后屈曲|最大挠度|曲线封闭|Maple

Abstract: A Maple code is developed for the slender, flexible, compressed post-buckling bar. Its deformation curve shape is numerically simulated. Simulations and detailed solutions are given for two cases---the maximum deflection and the closing deflection curve after buckling. Mechanical character of instability after buckling is analyzed and computed. Analysis expression is given; the geometric features of the curve in the equilibrium case after buckling is analyzed and computed. The results indicate that the maximum deflection after buckling and the closing deflection curve are two completely different buckling states.

Key words:

slender flexible bar|post-buckling|maximum flexibility|curve closing|Maple

中图分类号: