1 |
Hung ES, Senturia SD.Extending the travel range of analog-tuned electrostatic actuators.Journal of Microelectromechanical Systems, 1999, 8(4): 497-5052 Li X, Bhushan B, Takashima K, et al.Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy, 2003, 97(1-4): 481-4943 Moser Y, Gijs MAM.Miniaturized flexible temperature sensor. Journal of Microelectromechanical Systems, 2007, 16(6): 1349-13544 Pei J, Tian F, Thundat T.Glucose biosensor based on the microcantilever. Analytical Chemistry, 2004, 76(2): 292-2975 Najar F, Nayfeh AH, Abdel-Rahman EM, et al.Global stability of microbeam-based electrostatic microactuators. Journal of Vibration and Control, 2010, 16(5): 721-7486 Eringen AC.On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 1983, 54(9): 4703-47107 Kuang Y, He X, Chen C, et al.Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid. Computational Materials Science, 2009, 45(4): 875-8808 Reddy JN.Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 2007, 45(2): 288-3079 Thai H-T.A nonlocal beam theory for bending, buckling, and vibration of nanobeams.International Journal of Engineering Science, 2012, 52: 56-6410 Li C, Lim CW, Yu JL.Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load. Smart Materials and Structures, 2011, 20: 15-2311 Ansari R, Gholami R, Rouhi H.Various gradient elasticity theories in predicting vibrational response of single-walled carbon nanotubes with arbitrary boundary conditions. Journal of Vibration and Control, 2013, 19(5): 708-71912 Simsek M.Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and hes variational method. Composite Structures,2014, 112: 264-27213 Xia W, Wang L, Yin L.Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. International Journal of Engineering Science, 2010, 48(12): 2044-205314 Sahmani S, Bahrami M, Ansari R.Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory. Composite Structures, 2014, 110: 219-23015 李莉, 陈万吉, 李小鹏. 修正偶应力理论层合薄板自由振动模型及尺度效应. 大连理工大学学报, 2013, 53(3):313-32116 陈万吉, 杨胜奇. 有限元方法研究修正偶应力Mindlin层合板的尺寸效应. 沈阳航空航天大学学报, 2014, 31(3):1-817 Lim CW, Zhang G, Reddy JN.A higher-order nonlocal elasticity and strain gradient theory and its applications in waves propagation. Journal of the Mechanics and Physics of Solids, 2015, 78: 298-31318 Eringen AC.On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 1983, 54(9): 4703-471019 陈玲, 沈纪苹, 李成等. 梯度型非局部高阶梁理论与非局部弯曲新解法. 力学学报, 2016, 48(1): 127-134
|