力学与实践 ›› 2018, Vol. 40 ›› Issue (6): 671-675.DOI: 10.6052/1000-0879-17-437

• 应用研究 • 上一篇    下一篇

轴压构件屈曲临界载荷放大系数的研究1)

王杜欣2), 刘占科   

  1. 兰州大学土木工程与力学学院,西部灾害与环境力学教育部重点实验室, 兰州 730000
  • 收稿日期:2017-12-27 出版日期:2018-12-15 发布日期:2019-01-02
  • 作者简介:2) 王杜欣,在读硕士,主要研究方向为钢结构基本理论和应用等。E-mail: wangdx16@ lzu.edu.cn
  • 基金资助:
    国家自然科学基金(51308272)和兰州大学中央高校基本科研业务费专项资金(lzujbky-2016-109)资助项目

STUDY ON AMPLIFICATION FACTOR OF FLEXURAL BUCKLING CRITICAL LOAD OF AXIAL COMPRESSION BARS1)

WANG Duxin2), LIU Zhanke   

  1. Key Laboratory of Mechanics on Disaster and Environment in Western China, the Ministry of Education of China, School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
  • Received:2017-12-27 Online:2018-12-15 Published:2019-01-02

摘要: 为了建立一般条件下轴压构件屈曲临界载荷的计算理论,首先对轴心受压构件发生屈曲时的总势能方程进行了推导,然后采用Rayleigh-Ritz法并基于势能驻值原理得到了4种不同端部约束条件下轴压构件的屈曲临界载荷,对比欧拉临界载荷,给出了临界载荷放大系数 的计算式,全面考虑了构件长细比、压缩变形、剪切变形以及截面形状系数对临界载荷的影响,推导的计算式可用于较小长细比轴压构件发生屈曲时临界载荷的计算.圆截面和双轴对称工字形截面轴压构件屈曲临界载荷的分析表明构件长细比是影响放大系数的主导因素。

关键词: 屈曲临界载荷|轴心受压构件|总势能方程|放大系数|长细比

Abstract: In order to establish the calculation theory of flexural buckling critical loads for axial compression members under normal conditions, First of all, the total potential energy equation for bending buckling of bars was derived, then the critical loads for four kinds of end constraint conditions were obtained by employing Rayleigh-Ritz method and based on the principle of potential energy stationary value theory, and the formula of critical load amplification coefficient was given by comparing the Euler's critical load, which was able to consider the influence of slenderness ratio, compression deformation, shear deformation and cross-sectional shape coefficients, and the formula was derived in this paper can be used to calculate the critical loads for compression bars in possession of smaller slenderness ratio. The analysis of the critical loads between the circular-section and the biaxial symmetric I-section axial compression members show that the slenderness ratio of the member is the dominant factor affecting the amplification coefficient.

Key words: flexural buckling critical loads|axial compression members|the total potential energy equation|the amplification coefficient|slenderness ratio

中图分类号: