全部

力学与实践 ›› 2016, Vol. 38 ›› Issue (1): 38-42.doi: 10.6052/1000-0879-15-170

• 应用研究 • 上一篇    下一篇

基于流固耦合的跨声速压气机叶片静气动弹性分析

汪松柏1, 李绍斌1,2, 宋西镇1   

  1. 1. 北京航空航天大学能源与动力工程学院, 航空发动机气动热力国家级重点实验室, 北京 100191;
    2. 先进航空发动机协同创新中心, 北京 100191
  • 收稿日期:2015-06-17 修回日期:2015-10-08 出版日期:2016-01-15 发布日期:2016-02-25
  • 通讯作者: 汪松柏,硕士,主要从事叶轮机械非定常数值模拟及多物理场耦合等研究方向.E-mail:wsb_buaa@163.com;李绍斌,博士,讲师,主要从事叶轮机械气动力学研究.E-mail:lee_shaobin@buaa.edu.cn E-mail:wsb_buaa@163.com;lee_shaobin@buaa.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(51106003).

AEROELASTIC ANALYSIS OF A TRANSONIC COMPRESSOR BLADE BASED ON FLUID-STRUCTURE INTERACTION METHOD

Wang Songbai1, Li Shaobin1,2, Song Xizhen1   

  1. 1. National Key Laboratory of Science and Technology on Aero-thermodynamics, School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
    2. Collaborative Innovation Center for Advanced Aero-Engine, Beijing 100191, China
  • Received:2015-06-17 Revised:2015-10-08 Online:2016-01-15 Published:2016-02-25

摘要:

采用时域推进的双向流固耦合方法对一级跨声速压气机叶片流场和固体域进行数值模拟,研究跨声速转子叶片静气动弹性变形及其对气动性能的影响,对比分析了100{%}转速下转子叶片的气动特性和固有频率的变化.结果表明:转子叶片在气动力和离心惯性力共同作用下的弹性变形以扭转变形为主,气动力对叶尖前缘变形量的影响可达总变形量的20{%}.转子叶片变形后通道流通能力增强,气动特性曲线向大流量方向偏移.

关键词:

跨声速压气机|静气动弹性|流固耦合

Abstract:

In order to study the effect of a transonic rotor blade static aeroelastic deformation on the aerodynamic performance, a time domain numerical simulation method for the Two-Way Fluid-Structure Interaction is applied to simulate the flow field and the solid domain of one-stage transonic compressor blades, The comparison of the aerodynamic performance and the natural frequency is analyzed in 100% rotating speed. The results show that the total aeroelastic deformation is dominated by the torsional deformation under aerodynamic and centrifugal forces. The aerodynamic force contribution to the total deformation at the leading edge is up to 20%, the flow capacity of the blade passage is enhanced and the aerodynamic characteristic map is shifted to the larger flow rate direction after the static deformation.

Key words:

transonic compressor|static aeroelasticity|fluid-structure interaction

中图分类号: 

  • V231.3