全部

力学与实践 ›› 2014, Vol. 36 ›› Issue (5): 636-638.doi: 10.6052/1000-0879-13-388

• 应用研究 • 上一篇    下一篇

压杆稳定性问题浅议

丁然   

  1. 军事交通学院力学教研室, 天津 300161
  • 收稿日期:2013-09-25 修回日期:2014-02-11 出版日期:2014-10-15 发布日期:2014-11-13
  • 通讯作者: 丁然,E-mail:dr12607@126.com E-mail:dr12607@126.com

DISCUSSION ON THE STABILITY OF EULER'S POLE

DING Ran   

  1. Department of Mechanics, Military Transportation University, Tianjin 300161, China
  • Received:2013-09-25 Revised:2014-02-11 Online:2014-10-15 Published:2014-11-13

摘要:

对于压杆稳定问题,很容易误认为,只有当轴向压力等于临界载荷及其若干整数倍时,杆件才有曲线平衡解,才会失稳;当轴向压力介于临界载荷整数倍之间时,杆件不存在曲线平衡解,不会失稳,这与实际情况不符。利用曲率的精确公式,探讨了造成这一问题的原因,说明了拉杆不会失稳的原因,描述了随着压力增大压杆挠曲线的变化情况。

关键词:

压杆稳定|挠曲线|轴向压力

Abstract:

The critical axial pressures of an Euler's pole in some constraint conditions are well known. According to the derivation, the Euler's staight pole might be in a curved static state and lose stability only if the axial pressure is equal to some integer multiple of the critical axial pressure value. When the pressure is between two integer multiples of the critical value, the pole might not be in a curved static state. In other words, it will remain in a straight state and will not lose stability. This is obviously not consistent with the reality. The problem is discussed in this paper by using the exact formula of the pole's curvature. The reason why the pull-pole will not lose stability is explained. Meanwhile, the variation of the pole's deflection curve with the increase of the axial pressure is discussed.

Key words:

stability of Euler's pole|deflection curve|the axial pressure

中图分类号: 

  • O341