力学与实践 ›› 2014, Vol. 36 ›› Issue (1): 76-80,121.DOI: 10.6052/1000-0879-13-260

• 应用研究 • 上一篇    下一篇

AUFS格式在无网格方法中的应用

吴伟, 许厚谦, 王亮, 薛锐   

  1. 南京理工大学能源与动力工程学院, 南京210094
  • 收稿日期:2013-06-14 修回日期:2013-10-11 出版日期:2014-02-08 发布日期:2013-12-25
  • 通讯作者: 吴伟,博士研究生,主要研究方向为无网格方法. E-mail:wuwei.njust.804@gmail.com

APPLICATION OF AUFS SCHEME IN GRIDLESS METHOD

WU Wei, XU Houqian, WANG Liang, XUE Rui   

  1. School of Power Engineering Nanjing University of Science & Technology, Nanjing 210094, China
  • Received:2013-06-14 Revised:2013-10-11 Online:2014-02-08 Published:2013-12-25

摘要:

将计算量小,激波分辨率高的AUFS (artificially upstream flux vector splitting) 格式应用于无网格方法. 所发展算法基于多项式基函数最小二乘无网格方法,采用线性基函数曲面拟合及AUFS 格式计算各离散点的空间导数,应用四阶Runge-Kutta 法进行时间显式推进. 为验证算法健壮性、精度以及计算效率,对Riemann 问题、超音速平面流动,以及不同攻角NACA0012 翼型跨音速流场进行了数值模拟,其结果同采用HLLC (Harten-Lax-van Leer-contact) 格式的无网格方法以及文献报道结果吻合较好,并且计算量较形式简单HLLC 格式减少约15%.

关键词:

无网格|Euler方程|AUFS(artificially upstream flux vector splitting)格式

Abstract:

The artificially upstream flux vector splitting (AUFS) scheme is extended into a gridless method successfully. This gridless method is based on the polynomial basis least-squares method, the curve fitting of linear basis function and AUFS scheme are employed to calculate the spatial derivatives, and a four-stage Runge-Kutta algorithm is applied to advance the Euler equations in time. In order to demonstrate the effciency and the accuracy of this method, a Riemann problem, a supersonic flow in channel, and a transonic flow of NACA0012 airfoil at di?erent attack angles are simulated, and the results are in good agreement with the results calculated by the HLLC (Harten-Lax-van Leer-contact) scheme and other references. Besides, the time spent in the AUFS scheme is about 15% less than in the HLLC scheme.

Key words:

gridless method|Euler equations|AUFS (artificially upstream flux vector splitting) scheme

中图分类号: