›› 2014, Vol. 36 ›› Issue (3): 345-347,360.DOI: 10.6052/1000-0879-13-103

• 应用研究 • 上一篇    下一篇

细长压杆的失稳点及临界压力的确定方法研究

王廷伟, 黄丽华, 刘明, 付娆   

  1. 大连理工大学建设工程学部, 辽宁大连116024
  • 收稿日期:2013-03-28 修回日期:2013-05-06 出版日期:2014-06-08 发布日期:2014-06-10
  • 通讯作者: 王廷伟,1990年生,男,研究方向为结构工程.E-mail:kelvinwangting@163.com
  • 基金资助:
    大连理工大学2011年创新项目资助(2011704).

THE DETERMINATION OF BUCKLING POINT AND CRITICAL LOAD OF COMPRESSIVE MEMBER

WANG Tingwei, HUANG Lihua, LIU Ming, FU Rao   

  1. Faculty of Infrastructure Engineering, Dalian University of Technology, Liaoning, Dalian 116024, China
  • Received:2013-03-28 Revised:2013-05-06 Online:2014-06-08 Published:2014-06-10

摘要: 为了分析压杆失稳的临界力与失稳后杆件屈服形态的关系,在理论推导和试验研究的基础上,提出了通过捕捉细长压杆失稳时的失稳点来确定压杆临界力的分析方法,通过测量细长压杆失稳时微弯状态下杆端的纵向位移,求得临界压力的大小. 文中将该方法的实验结果与直接用欧拉公式计算的临界压力进行了比较,结果表明,考虑细长压杆微弯状态时杆端的纵向位移所得到的失稳的临界压力值大于利用欧拉公式计算的临界压力值.

关键词: 压杆稳定|失稳点|临界压力|微弯状态

Abstract: In order to analyze the relationship between the critical load and the buckling shape of a pole bar, on the basis of theoretical analysis and experiments, the method of determinating the critical load through looking for the buckling point for a long slender member subjected to axial compressive force is used in this paper. The critical load can be determined by the longitudinal displacement at one end of the compressive member, which is in equilibrium with a small lateral deflection. The critical load with consideration of the longitudinal displacement is compared to that from Euler's formula, and a larger critical load is obtained.

Key words: stability of compressive member|buckling point|critical load|slightly lateral deflection

中图分类号: