全部

力学与实践 ›› 2013, Vol. 35 ›› Issue (4): 53-55.doi: 10.6052/1000-0879-12-225

• 应用研究 • 上一篇    下一篇

卷积型最小二乘法求解梁的动力学问题

李永莉1, 赵志岗2, 杨华1   

  1. 1. 济南大学土木建筑学院, 济南250022;
    2. 天津大学力学系, 天津300072
  • 收稿日期:2012-05-31 修回日期:2013-01-18 出版日期:2013-08-08 发布日期:2013-08-26
  • 通讯作者: 李永莉,讲师,硕士,主要研究结构的数值计算.E-mail:cealiyl@ujn.edu.cn E-mail:cealiyl@ujn.edu.cn

THE CALCULATION OF THE DYNAMIC PROBLEM OF A BEAM BY METHOD OF CONVOLUTION-TYPE LEAST SQUARES METHOD

LI Yongli1, ZHAO Zhigang2, YANG Hua1   

  1. 1. School of Civil Engineering and Architecture, Jinan University, Jinan 250022, China;
    2. Department of Mechanics, Tianjin University, Tianjin 300072, China
  • Received:2012-05-31 Revised:2013-01-18 Online:2013-08-08 Published:2013-08-26

摘要:

提出了卷积型最小二乘法,并用其计算了不同初始条件和不同边界条件下梁的动力学问题,算例表明,方法概念简单,计算方便,精度高,计算工作量少,卷积型最小二乘法是计算结构动力学问题的一种简单、高效的方法,试函数可以不满足边界条件.

关键词:

结构动力学|最小二乘法|卷积|梁|加权残值法

Abstract:

In the existing analytical cable elements, the temperature effects are considered, with the unstressed length being calculated according to the temperature variation first and being taken as the reference state for the static strain. Therefore, the temperature strain and the strain by the static loads have different reference states. Based on Irvine's work, a temperature effect correction for an analytical cable element is made to overcome this problem. An example shows the rationality of the correction.

Key words:

structure dynamics|least square method|convolution|beam|method of weighted residuals

中图分类号: 

  • O342