• 应用研究 •

### 板壳结构的应力约束拓扑优化设计

1. 北京工业大学工程数值模拟中心,北京 100124
• 收稿日期:2012-01-19 修回日期:2012-03-19 出版日期:2012-08-15 发布日期:2012-08-27
• 通讯作者: 隋允康,教授,博士生导师,从事计算力学、结构与多学科优化. E-mail: ysui@bjut.edu.cn
• 作者简介:隋允康,教授,博士生导师,从事计算力学、结构与多学科优化. E-mail: ysui@bjut.edu.cn
• 基金资助:

国家自然科学基金(11172013,11072009),北京市自然科学基金(3122004),大连理工大学工业装备结构分析国家重点实验室基金项目(GZ0819).

### TOPOLOGICAL OPTIMIZATION OF PLATE AND SHELL STRUCTURE WITH STRESS CONSTRAINTS

LIU Xiaodi, SUI Yunkang, YU Huiping

1. Numerical Simulation Center for Engineering, Beijing University of Technology, Beijing 100124, China
• Received:2012-01-19 Revised:2012-03-19 Online:2012-08-15 Published:2012-08-27

ICM 方法|拓扑优化|应力约束|板壳结构

Abstract:

ICM method is applied to slove topological optimization of plate and shell structure with stress constraints. An approximately explicit topological ICM optimization model of plate and shell structure with each design variable controlling multiple elements is established to minimize the weight with stress constraints. Stress constraints are transformed into structural distortional energy constraints in terms of the Misses strength theory which reduces the number of the stress constraints. The model is solved by SQP (sequential quadratic programming) algorithm using exact dual mapping. MSC/Patran & Nastran software is taken as a secondary development platform. The algorithm in this paper is implemented on by PCL language. Examples for the design variables equal to the number of cells were calculated, indicating that the method is effective and feasible.

Key words:

ICM method|topological optimization|stress constraints|plate and shell structure